Advertisement

Diabetologia

, Volume 62, Issue 1, pp 202–203 | Cite as

Comment on ‘Exercise training decreases pancreatic fat content and improves beta cell function regardless of baseline glucose tolerance: a randomised controlled trial’

  • Payam Amini
  • Sevda Moharamzadeh
Letter
  • 75 Downloads

Keywords

Exercise training High-intensity interval training Moderate-intensity continuous training Pancreatic fat content Pancreatic metabolism Prediabetes Statistical model Type 2 diabetes 

Abbreviation

PFC

Pancreatic fat content

Notes

Acknowledgements

We thank R. Hosseini (Department of Andrology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran) for her valuable help and consulting.

Contribution statement

Both authors were responsible for drafting the article and revising it critically for important intellectual content. Both authors approved the version to be published.

Duality of interest

The authors declare that there is no duality of interest associated with this manuscript.

References

  1. 1.
    Heiskanen MA, Motiani KK, Mari A et al (2018) Exercise training decreases pancreatic fat content and improves beta cell function regardless of baseline glucose tolerance: a randomised controlled trial. Diabetologia 61(8):1817–1828.  https://doi.org/10.1007/s00125-018-4627-x CrossRefPubMedGoogle Scholar
  2. 2.
    Agresti A (2003) Categorical data analysis. John Wiley & Sons, New JerseyGoogle Scholar
  3. 3.
    Fitzmaurice G, Davidian M, Verbeke G, Molenberghs G (2008) Longitudinal data analysis. CRC press, Boca Raton, FLGoogle Scholar
  4. 4.
    Rohlfing CL, Wiedmeyer HM, Little RR, England JD, Tennill A, Goldstein DE (2002) Defining the relationship between plasma glucose and HbA1c: analysis of glucose profiles and HbA1c in the Diabetes Control and Complications Trial. Diabetes Care 25(2):275–278.  https://doi.org/10.2337/diacare.25.2.275 CrossRefPubMedGoogle Scholar
  5. 5.
    Tahara Y, Shima K (1995) Kinetics of HbA1c, glycated albumin, and fructosamine and analysis of their weight functions against preceding plasma glucose level. Diabetes Care 18(4):440–447.  https://doi.org/10.2337/diacare.18.4.440 CrossRefPubMedGoogle Scholar
  6. 6.
    Paroni R, Ceriotti F, Galanello R et al (2007) Performance characteristics and clinical utility of an enzymatic method for the measurement of glycated albumin in plasma. Clin Biochem 40(18):1398–1405.  https://doi.org/10.1016/j.clinbiochem.2007.08.001 CrossRefPubMedGoogle Scholar
  7. 7.
    Yoshiuchi K, Matsuhisa M, Katakami N et al (2008) Glycated albumin is a better indicator for glucose excursion than glycated hemoglobin in type 1 and type 2 diabetes. Endocr J 55(3):503–507.  https://doi.org/10.1507/endocrj.K07E-089 CrossRefPubMedGoogle Scholar
  8. 8.
    Kohnert KD, Heinke P, Vogt L, Salzsieder E (2015) Utility of different glycemic control metrics for optimizing management of diabetes. World J Diabetes 6(1):17–29.  https://doi.org/10.4239/wjd.v6.i1.17 CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Epidemiology and Reproductive Health, Reproductive Epidemiology Research Center, Royan Institute for Reproductive Biomedicine, ACECRTehranIran
  2. 2.Department of Regenerative Biomedicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECRTehranIran

Personalised recommendations