Advertisement

Theoretical and Applied Genetics

, Volume 133, Issue 1, pp 353–364 | Cite as

Genetic mapping of green curd gene Gr in cauliflower

  • Huaqiang Tan
  • Xin Wang
  • Zhangjun Fei
  • Huanxiu Li
  • Yaakov Tadmor
  • Michael Mazourek
  • Li LiEmail author
Original Article

Key message

Gr5.1 is the major locus for cauliflower green curd color and mapped to an interval of 236 Kbp with four most likely candidate genes.

Abstract

Cauliflower with colored curd enhances not only the visual appeal but also the nutritional value of the crop. Green cauliflower results from ectopic development of chloroplasts in the normal white curd. However, the underlying genetic basis is unknown. In this study, we employed QTL-seq analysis to identify the loci that were associated with green curd phenotype in cauliflower. A F2 population was generated following a cross between a white curd (Stovepipe) and a green curd (ACX800) cauliflower plants. By whole-genome resequencing and SNP analysis of green and white F2 bulks, two QTLs were detected on chromosomes 5 (Gr5.1) and 7 (Gr7.1). Validation by traditional genetic mapping with CAPS markers suggested that Gr5.1 represented a major QTL, whereas Gr7.1 had a minor effect. Subsequent high-resolution mapping of Gr5.1 in the second large F2 population with additional CAPS markers narrowed down the target region to a genetic and physical distance of 0.3 cM and 236 Kbp, respectively. This region contained 35 genes with four of them representing the best candidates for the green curd phenotype in cauliflower. They are LOC106295953, LOC106343833, LOC106345143, and LOC106295954, which encode UMP kinase, DEAD-box RNA helicase 51-like, glutathione S-transferase T3-like, and protein MKS1, respectively. These findings lay a solid foundation for the isolation of the Gr gene and provide a potential for marker-assisted selection of the green curd trait in cauliflower breeding. The eventual isolation of Gr will also facilitate better understanding of chloroplast biogenesis and development in plants.

Notes

Acknowledgements

We thank Mr. Evan Rees for field phenotyping, preparation of bulked DNA samples for QTL-seq analysis, and critical comments on this manuscript. HT acknowledges the graduate training scholarship from the China Scholarship Council (CSC). This work was supported by the Agriculture and Food Research Initiative competitive award Grant No. 2016-67013-24612 from the USDA National Institute of Food and Agriculture, the USDA-ARS base fund, and the United States–Israel Binational Agricultural Research and Development Fund (Grant No. US-4918-16CR).

Author contribution statement

HT performed most of the experiments. XW performed bioinformatic data analysis. ZF, HL, YT, and MM aided research design, assisted data analysis and interpretation, and/or edited the manuscript. HT and LL wrote the manuscript with contribution from all coauthors.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical standard

This research complies with the current laws of the USA.

Supplementary material

122_2019_3466_MOESM1_ESM.xlsx (13 kb)
Online Resource 1. Primers of CAPS markers for mapping (XLSX 13 kb)
122_2019_3466_MOESM2_ESM.xlsx (11 kb)
Online Resource 2. Primers used for RT-qPCR analysis of candidate genes (XLSX 10 kb)
122_2019_3466_MOESM3_ESM.xlsx (14 kb)
Online Resource 3. Genotype and phenotype of the 100 F2 individuals used to construct bulks for low-resolution mapping of Gr5.1 (XLSX 13 kb)
122_2019_3466_MOESM4_ESM.xlsx (14 kb)
Online Resource 4. Genotype and phenotype of the 100 F2 individuals used to construct bulks for Gr7.1 (XLSX 14 kb)
122_2019_3466_MOESM5_ESM.xlsx (98 kb)
Online Resource 5. Genotype and phenotype of 1291 individuals in the second large F2 population for high-resolution mapping of Gr5.1 (XLSX 98 kb)
122_2019_3466_MOESM6_ESM.xlsx (15 kb)
Online Resource 6. Information of 35 candidate genes. FPKM and fold change data were retrieved from Zhou et al. (2011) (XLSX 14 kb)
122_2019_3466_MOESM7_ESM.docx (378 kb)
Online Resource 7. UMP kinase protein sequence alignment and phylogenetic tree (DOCX 377 kb)

References

  1. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410CrossRefGoogle Scholar
  2. Andreasson E, Jenkins T, Brodersen P, Thorgrimsen S, Petersen NH, Zhu S, Qiu JL, Micheelsen P, Rocher A, Petersen M, Newman MA, Bjorn Nielsen H, Hirt H, Somssich I, Mattsson O, Mundy J (2005) The MAP kinase substrate MKS1 is a regulator of plant defense responses. EMBO J 24:2579–2589PubMedPubMedCentralGoogle Scholar
  3. Ang LH, Deng XW (1994) Regulatory hierarchy of photomorphogenic loci: allele-specific and light-dependent interaction between the HY5 and COP1 loci. Plant Cell 6:613–628PubMedPubMedCentralGoogle Scholar
  4. Asakura Y, Galarneau E, Watkins KP, Barkan A, van Wijk KJ (2012) Chloroplast RH3 DEAD box RNA helicases in maize and Arabidopsis function in splicing of specific group II introns and affect chloroplast ribosome biogenesis. Plant Physiol 159:961–974PubMedPubMedCentralGoogle Scholar
  5. Bolger AM, Lohse M, Usadel B (2014) Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30:2114–2120PubMedPubMedCentralGoogle Scholar
  6. Caspersen MB, Qiu JL, Zhang X, Andreasson E, Naested H, Mundy J, Svensson B (2007) Phosphorylation sites of Arabidopsis MAP kinase substrate 1 (MKS1). Biochim Biophys Acta 1774:1156–1163PubMedGoogle Scholar
  7. Chayut N, Yuan H, Ohali S, Meir A, Sa’ar U, Tzuri G, Zheng Y, Mazourek M, Gepstein S, Zhou X, Portnoy V, Lewinsohn E, Schaffer AA, Katzir N, Fei Z, Welsch R, Li L, Burger J, Tadmor Y (2017) Distinct mechanisms of the ORANGE protein in controlling carotenoid flux. Plant Physiol 173:376–389PubMedGoogle Scholar
  8. Chen IC, Huang IC, Liu MJ, Wang ZG, Chung SS, Hsieh HL (2007) Glutathione S-transferase interacting with far-red insensitive 219 is involved in phytochrome A-mediated signaling in Arabidopsis. Plant Physiol 143:1189–1202PubMedPubMedCentralGoogle Scholar
  9. Chen F, Dong G, Ma X, Wang F, Zhang Y, Xiong E, Wu J, Wang H, Qian Q, Wu L, Yu Y (2018) UMP kinase activity is involved in proper chloroplast development in rice. Photosynth Res 137:53–67PubMedPubMedCentralGoogle Scholar
  10. Chi W, He B, Mao J, Li Q, Ma J, Ji D, Zou M, Zhang L (2012) The function of RH22, a DEAD RNA helicase, in the biogenesis of the 50S ribosomal subunits of Arabidopsis chloroplasts. Plant Physiol 158:693–707PubMedGoogle Scholar
  11. Chiu LW, Li L (2012) Characterization of the regulatory network of BoMYB2 in controlling anthocyanin biosynthesis in purple cauliflower. Planta 236:1153–1164PubMedGoogle Scholar
  12. Chiu LW, Zhou X, Burke S, Wu X, Prior RL, Li L (2010) The purple cauliflower arises from activation of a MYB transcription factor. Plant Physiol 154:1470–1480PubMedPubMedCentralGoogle Scholar
  13. Clevenger J, Chu Y, Chavarro C, Botton S, Culbreath A, Isleib TG, Holbrook CC, Ozias-Akins P (2018) Mapping late leaf spot resistance in peanut (Arachis hypogaea) using QTL-seq reveals markers for marker-assisted selection. Front Plant Sci 9:83PubMedPubMedCentralGoogle Scholar
  14. Crisp P, Angell S (1985) Genetic control of green curd colour in cauliflower. Ann Appl Biol 107:601–603Google Scholar
  15. Crisp P, Walkey DGA, Bellman E, Roberts E (1975) A mutation affecting curd colour in cauliflower (Brassica oleracea L. var. Botrytis DC). Euphytica 24:173–176Google Scholar
  16. Das S, Upadhyaya HD, Bajaj D, Kujur A, Badoni S, Laxmi Kumar V, Tripathi S, Gowda CL, Sharma S, Singh S, Tyagi AK, Parida SK (2015) Deploying QTL-seq for rapid delineation of a potential candidate gene underlying major trait-associated QTL in chickpea. DNA Res 22:193–203PubMedPubMedCentralGoogle Scholar
  17. Dellaporta SL, Wood J, Hicks JB (1983) A plant DNA minipreparation: version II. Plant Mol Biol Rep 1:19–21Google Scholar
  18. Dixon DP, Hawkins T, Hussey PJ, Edwards R (2009) Enzyme activities and subcellular localization of members of the Arabidopsis glutathione transferase superfamily. J Exp Bot 60:1207–1218PubMedPubMedCentralGoogle Scholar
  19. Duclos DV, Björkman T (2008) Meristem identity gene expression during curd proliferation and flower initiation in Brassica oleracea. J Exp Bot 59:421–433PubMedGoogle Scholar
  20. Hajdu A, Dobos O, Domijan M, Bálint B, Nagy I, Nagy F, Kozma-Bognár L (2018) ELONGATED HYPOCOTYL 5 mediates blue light signalling to the Arabidopsis circadian clock. Plant J 96:1242–1254PubMedGoogle Scholar
  21. Hein P, Stockel J, Bennewitz S, Oelmuller R (2009) A protein related to prokaryotic UMP kinases is involved in psaA/B transcript accumulation in Arabidopsis. Plant Mol Biol 69:517–528PubMedGoogle Scholar
  22. Huo D, Ning Q, Shen X, Liu L, Zhang Z (2016) QTL mapping of kernel number-related traits and validation of one major QTL for ear length in maize. PLoS ONE 11:e0155506PubMedPubMedCentralGoogle Scholar
  23. Jiang HW, Liu MJ, Chen IC, Huang CH, Chao LY, Hsieh HL (2010) A glutathione S-transferase regulated by light and hormones participates in the modulation of Arabidopsis seedling development. Plant Physiol 154:1646–1658PubMedPubMedCentralGoogle Scholar
  24. Kasajima I, Ide Y, Ohkama-Ohtsu N, Hayashi H, Yoneyama T, Fujiwara T (2004) A protocol for rapid DNA extraction from Arabidopsis thaliana for PCR analysis. Plant Mol Biol Rep 22:49–52Google Scholar
  25. Kempin SA, Savidge B, Yanofsky MF (1995) Molecular basis of the cauliflower phenotype in Arabidopsis. Science 267:522–525PubMedGoogle Scholar
  26. Konieczny A, Ausubel FM (1993) A procedure for mapping Arabidopsis mutations using co-dominant ecotype-specific PCR-based markers. Plant J 4:403–410PubMedGoogle Scholar
  27. Kosambi DD (2016) The estimation of map distances from recombination values. Springer, Berlin, pp 125–130Google Scholar
  28. Labate JA, Robertson LD, Baldo AM, Börkman T (2006) Inflorescence identity gene alleles are poor predictors of inflorescence type in broccoli and cauliflower. J Am Soc Hortic Sci 131:667–673Google Scholar
  29. Labesse G, Bucurenci N, Douguet D, Sakamoto H, Landais S, Gagyi C, Gilles A-M, Bârzu O (2002) Comparative modelling and immunochemical reactivity of Escherichia coli UMP kinase. Biochem Biophys Res Commun 294:173–179PubMedGoogle Scholar
  30. Lee GA, Koh HJ, Chung HK, Dixit A, Chung JW, Ma KH, Lee SY, Lee JR, Lee GS, Gwag JG, Kim TS, Park YJ (2009) Development of SNP-based CAPS and dCAPS markers in eight different genes involved in starch biosynthesis in rice. Mol Breeding 24:93–101Google Scholar
  31. Lee KH, Park J, Williams DS, Xiong Y, Hwang I, Kang BH (2013) Defective chloroplast development inhibits maintenance of normal levels of abscisic acid in a mutant of the Arabidopsis RH3 DEAD-box protein during early post-germination growth. Plant J 73:720–732PubMedGoogle Scholar
  32. Li L, Garvin DF (2003) Molecular mapping of Or, a gene inducing beta-carotene accumulation in cauliflower (Brassica oleracea L. var. botrytis). Genome 46:588–594PubMedGoogle Scholar
  33. Li H, Durbin R (2009) Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics 25:1754–1760PubMedPubMedCentralGoogle Scholar
  34. Li L, Paolillo DJ, Parthasarathy MV, Dimuzio EM, Garvin DF (2001) A novel gene mutation that confers abnormal patterns of beta-carotene accumulation in cauliflower (Brassica oleracea var. botrytis). Plant J 26:59–67PubMedGoogle Scholar
  35. Li L, Lu S, O’Halloran DM, Garvin DF, Vrebalov J (2003) High-resolution genetic and physical mapping of the cauliflower high-beta-carotene gene Or (Orange). Mol Genet Genomics 270:132–138PubMedGoogle Scholar
  36. Li L, Lu S, Cosman KM, Earle ED, Garvin DF, O’Neill J (2006) Beta-Carotene accumulation induced by the cauliflower Or gene is not due to an increased capacity of biosynthesis. Phytochemistry 67:1177–1184PubMedGoogle Scholar
  37. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R (2009) The sequence alignment/map format and SAMtools. Bioinformatics 25:2078–2079PubMedPubMedCentralGoogle Scholar
  38. Li L, Yang Y, Xu Q, Owsiany K, Welsch R, Chitchumroonchokchai C, Lu S, Van Eck J, Deng XX, Failla M (2012) The Or gene enhances carotenoid accumulation and stability during post-harvest storage of potato tubers. Mol Plant 5:339–352PubMedGoogle Scholar
  39. Link G, Tiller K, Baginsky S (1997) Glutathione, a regulator of chloroplast transcription. In: Hatzios KK (ed) Regulation of enzymatic systems detoxifying xenobiotics in plants. Kluwer, Dordrecht, pp 125–137Google Scholar
  40. Liu S, Liu Y, Yang X, Tong C, Edwards D, Parkin IA, Zhao M, Ma J, Yu J, Huang S (2014) The Brassica oleracea genome reveals the asymmetrical evolution of polyploid genomes. Nat Commun 5:3930PubMedPubMedCentralGoogle Scholar
  41. Lopez AB, Van Eck J, Conlin BJ, Paolillo DJ, O’Neill J, Li L (2008) Effect of the cauliflower Or transgene on carotenoid accumulation and chromoplast formation in transgenic potato tubers. J Exp Bot 59:213–223PubMedGoogle Scholar
  42. Lowman AC, Purugganan MD (1999) Duplication of the Brassica oleracea APETALA1 floral homeotic gene and the evolution of domesticated cauliflower. J Hered 90:514–520PubMedGoogle Scholar
  43. Lu S, Van Eck J, Zhou X, Lopez AB, O’Halloran DM, Cosman KM, Conlin BJ, Paolillo DJ, Garvin DF, Vrebalov J, Kochian LV, Kupper H, Earle ED, Cao J, Li L (2006) The cauliflower Or gene encodes a DnaJ cysteine-rich domain-containing protein that mediates high levels of beta-carotene accumulation. Plant Cell 18:3594–3605PubMedPubMedCentralGoogle Scholar
  44. Lu H, Lin T, Klein J, Wang S, Qi J, Zhou Q, Sun J, Zhang Z, Weng Y, Huang S (2014) QTL-seq identifies an early flowering QTL located near Flowering Locus T in cucumber. Theor Appl Genet 127:1491–1499PubMedGoogle Scholar
  45. Manchali S, Murthy KNC, Patil BS (2012) Crucial facts about health benefits of popular cruciferous vegetables. J Funct Foods 4:94–106Google Scholar
  46. Masumoto H, Takagi H, Mukainari Y, Terauchi R, Fukunaga K (2016) Genetic analysis of NEKODE1 gene involved in panicle branching of foxtail millet, Setaria italica (L.) P. Beauv., and mapping by using QTL-seq. Mol Breeding 36:59Google Scholar
  47. Michelmore RW, Paran I, Kesseli R (1991) Identification of markers linked to disease-resistance genes by bulked segregant analysis: a rapid method to detect markers in specific genomic regions by using segregating populations. Proc Natl Acad Sci 88:9828–9832PubMedPubMedCentralGoogle Scholar
  48. Nawaz G, Kang H (2017) Chloroplast- or mitochondria-targeted DEAD-Box RNA helicases play essential roles in organellar RNA metabolism and abiotic stress responses. Front Plant Sci 8:871PubMedPubMedCentralGoogle Scholar
  49. Nishimura K, Ashida H, Ogawa T, Yokota A (2010) A DEAD box protein is required for formation of a hidden break in Arabidopsis chloroplast 23S rRNA. Plant J 63:766–777PubMedGoogle Scholar
  50. Noctor G, Mhamdi A, Chaouch S, Han Y, Neukermans J, Marquez-Garcia B, Queval G, Foyer CH (2012) Glutathione in plants: an integrated overview. Plant, Cell Environ 35:454–484Google Scholar
  51. Pandey MK, Khan AW, Singh VK, Vishwakarma MK, Shasidhar Y, Kumar V, Garg V, Bhat RS, Chitikineni A, Janila P, Guo B, Varshney RK (2017) QTL-seq approach identified genomic regions and diagnostic markers for rust and late leaf spot resistance in groundnut (Arachis hypogaea L.). Plant Biotechnol J 15:927–941PubMedPubMedCentralGoogle Scholar
  52. Park S, Kim HS, Jung YJ, Kim SH, Ji CY, Wang Z, Jeong JC, Lee H-S, Lee SY, Kwak S-S (2016) Orange protein has a role in phytoene synthase stabilization in sweetpotato. Sci Rep 6:33563PubMedPubMedCentralGoogle Scholar
  53. Petersen K, Qiu JL, Lutje J, Fiil BK, Hansen S, Mundy J, Petersen M (2010) Arabidopsis MKS1 is involved in basal immunity and requires an intact N-terminal domain for proper function. PLoS ONE 5:e14364PubMedPubMedCentralGoogle Scholar
  54. Qiu JL, Fiil BK, Petersen K, Nielsen HB, Botanga CJ, Thorgrimsen S, Palma K, Suarez-Rodriguez MC, Sandbech-Clausen S, Lichota J, Brodersen P, Grasser KD, Mattsson O, Glazebrook J, Mundy J, Petersen M (2008) Arabidopsis MAP kinase 4 regulates gene expression through transcription factor release in the nucleus. EMBO J 27:2214–2221PubMedPubMedCentralGoogle Scholar
  55. Salvi S, Tuberosa R (2005) To clone or not to clone plant QTLs: present and future challenges. Trends Plant Sci 10:297–304PubMedGoogle Scholar
  56. Sappl PG, Carroll AJ, Clifton R, Lister R, Whelan J, Harvey Millar A, Singh KB (2009) The Arabidopsis glutathione transferase gene family displays complex stress regulation and co-silencing multiple genes results in altered metabolic sensitivity to oxidative stress. Plant J 58:53–68PubMedGoogle Scholar
  57. Schmid LM, Ohler L, Mohlmann T, Brachmann A, Muino JM, Leister D, Meurer J, Manavski N (2019) PUMPKIN, the sole plastid UMP kinase, associates with group II introns and alters their metabolism. Plant Physiol 179:248–264PubMedGoogle Scholar
  58. Shu J, Liu Y, Zhang L, Li Z, Fang Z, Yang L, Zhuang M, Zhang Y, Lv H (2018) QTL-seq for rapid identification of candidate genes for flowering time in broccoli × cabbage. Theor Appl Genet 131:917–928PubMedGoogle Scholar
  59. Singh VK, Khan AW, Jaganathan D, Thudi M, Roorkiwal M, Takagi H, Garg V, Kumar V, Chitikineni A, Gaur PM, Sutton T, Terauchi R, Varshney RK (2016a) QTL-seq for rapid identification of candidate genes for 100-seed weight and root/total plant dry weight ratio under rainfed conditions in chickpea. Plant Biotechnol J 14:2110–2119PubMedPubMedCentralGoogle Scholar
  60. Singh VK, Khan AW, Saxena RK, Kumar V, Kale SM, Sinha P, Chitikineni A, Pazhamala LT, Garg V, Sharma M, Sameer Kumar CV, Parupalli S, Vechalapu S, Patil S, Muniswamy S, Ghanta A, Yamini KN, Dharmaraj PS, Varshney RK (2016b) Next-generation sequencing for identification of candidate genes for Fusarium wilt and sterility mosaic disease in pigeonpea (Cajanus cajan). Plant Biotechnol J 14:1183–1194PubMedGoogle Scholar
  61. Takagi H, Abe A, Yoshida K, Kosugi S, Natsume S, Mitsuoka C, Uemura A, Utsushi H, Tamiru M, Takuno S, Innan H, Cano LM, Kamoun S, Terauchi R (2013) QTL-seq: rapid mapping of quantitative trait loci in rice by whole genome resequencing of DNA from two bulked populations. Plant J 74:174–183PubMedPubMedCentralGoogle Scholar
  62. Thiel T, Kota R, Grosse I, Stein N, Graner A (2004) SNP2CAPS: a SNP and INDEL analysis tool for CAPS marker development. Nucleic Acids Res 32:e5PubMedPubMedCentralGoogle Scholar
  63. Tzuri G, Zhou X, Chayut N, Yuan H, Portnoy V, Meir A, Sa’ar U, Baumkoler F, Mazourek M, Lewinsohn E, Fei Z, Schaffer AA, Li L, Burger J, Katzir N, Tadmor Y (2015) A ‘golden’ SNP in CmOr governs the fruit flesh color of melon (Cucumis melo). Plant J 82:267–279PubMedGoogle Scholar
  64. Untergasser A, Cutcutache I, Koressaar T, Ye J, Faircloth BC, Remm M, Rozen SG (2012) Primer3—new capabilities and interfaces. Nucleic Acids Res 40:e115–e115PubMedPubMedCentralGoogle Scholar
  65. Van Ooijen JW (2006) JoinMap® 4, Software for the calculation of genetic linkage maps in experimental populations. Kyazma BV, WageningenGoogle Scholar
  66. Wang H, Cheng H, Wang W, Liu J, Hao M, Mei D, Zhou R, Fu L, Hu Q (2016) Identification of BnaYUCCA6 as a candidate gene for branch angle in Brassica napus by QTL-seq. Sci Rep 6:38493PubMedPubMedCentralGoogle Scholar
  67. Wei QZ, Fu WY, Wang YZ, Qin XD, Wang J, Li J, Lou QF, Chen JF (2016) Rapid identification of fruit length loci in cucumber (Cucumis sativus L.) using next-generation sequencing (NGS)-based QTL analysis. Sci Rep 6:27496PubMedPubMedCentralGoogle Scholar
  68. Welsch R, Zhou X, Yuan H, Alvarez D, Sun T, Schlossarek D, Yang Y, Shen G, Zhang H, Rodriguez-Concepcion M, Thannhauser TW, Li L (2018) Clp protease and OR directly control the proteostasis of phytoene synthase, the crucial enzyme for carotenoid biosynthesis in Arabidopsis. Mol Plant 11:149–162PubMedGoogle Scholar
  69. Yazdani M, Sun Z, Yuan H, Zeng S, Thannhauser T, Vrebalov J, Ma Q, Xu Y, Fei Z, Van Eck J, Tian S, Tadmor Y, Giovannoni J, Li L (2019) Ectopic expression of ORANGE promotes carotenoid accumulation and fruit development in tomato. Plant Biotechnol J 17:33–49PubMedGoogle Scholar
  70. Yu CS, Chen YC, Lu CH, Hwang JK (2006) Prediction of protein subcellular localization. Proteins 64:643–651PubMedGoogle Scholar
  71. Yuan H, Owsiany K, Sheeja TE, Zhou X, Rodriguez C, Li Y, Welsch R, Chayut N, Yang Y, Thannhauser TW, Parthasarathy MV, Xu Q, Deng X, Fei Z, Schaffer A, Katzir N, Burger J, Tadmor Y, Li L (2015) A single amino acid substitution in an ORANGE protein promotes carotenoid overaccumulation in Arabidopsis. Plant Physiol 169:421–431PubMedPubMedCentralGoogle Scholar
  72. Zhou L, Lacroute F, Thornburg R (1998) Cloning, expression in Escherichia coli, and characterization of Arabidopsis thaliana UMP/CMP kinase. Plant Physiol 117:245–254PubMedPubMedCentralGoogle Scholar
  73. Zhou X, Fei Z, Thannhauser TW, Li L (2011) Transcriptome analysis of ectopic chloroplast development in green curd cauliflower (Brassica oleracea L. var. botrytis). BMC Plant Biol 11:169PubMedPubMedCentralGoogle Scholar
  74. Zhou X, Welsch R, Yang Y, Alvarez D, Riediger M, Yuan H, Fish T, Liu J, Thannhauser TW, Li L (2015) Arabidopsis OR proteins are the major posttranscriptional regulators of phytoene synthase in controlling carotenoid biosynthesis. Proc Natl Acad Sci 112:3558–3563PubMedGoogle Scholar
  75. Zhu X, Guo S, Wang Z, Du Q, Xing Y, Zhang T, Shen W, Sang X, Ling Y, He G (2016) Map-based cloning and functional analysis of YGL8, which controls leaf colour in rice (Oryza sativa). BMC Plant Biol 16:134PubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Robert W. Holley Center for Agriculture and Health, USDA-ARSCornell UniversityIthacaUSA
  2. 2.College of HorticultureSichuan Agricultural UniversityWenjiangChina
  3. 3.Plant Breeding and Genetics Section, School of Integrative Plant ScienceCornell UniversityIthacaUSA
  4. 4.Boyce Thompson InstituteCornell UniversityIthacaUSA
  5. 5.Plant Science Institute, Israeli Agricultural Research OrganizationNewe Yaar Research CenterRamat YishayIsrael

Personalised recommendations