Advertisement

Fine-mapping of a major QTL (Fwr1) for fusarium wilt resistance in radish

  • Xiaona Yu
  • Lu Lu
  • Yinbo Ma
  • Sushil Satish Chhapekar
  • So Young Yi
  • Yong Pyo Lim
  • Su Ryun ChoiEmail author
Original Article
  • 49 Downloads

Abstract

Key message

A major radish QTL (Fwr1) for fusarium wilt resistance was fine-mapped. Sequence and expression analyses suggest that a gene encoding a serine/arginine-rich protein kinase is a candidate gene for Fwr1.

Abstract

Fusarium wilt resistance locus 1 (Fwr1) is a major quantitative trait locus (QTL) mediating the resistance of radish inbred line ‘B2’ to Fusarium oxysporum, which is responsible for fusarium wilt. We previously detected Fwr1 on radish linkage group 3 (i.e., chromosome 5). In this study, a high-resolution genetic map of the Fwr1 locus was constructed by analyzing 354 recombinant F2 plants derived from a cross between ‘B2’ and ‘835’, the latter of which is susceptible to fusarium wilt. The Fwr1 QTL was fine-mapped to a 139.8-kb region between markers FM82 and FM87 in the middle part of chromosome 5. Fifteen candidate genes were predicted in this region based on a sequence comparison with the ‘WK10039’ radish reference genome. Additionally, we examined the time-course expression patterns of these predicted genes following an infection by the fusarium wilt pathogen. The ORF4 expression level was significantly higher in the resistant ‘B2’ plants than in the susceptible ‘835’ plants. The ORF4 sequence was predicted to encode a serine/arginine-rich protein kinase and includes SNPs that result in nonsynonymous mutations, which may have important functional consequences. This study reveals a novel gene responsible for fusarium wilt resistance in radish. Further analyses of this gene may elucidate the molecular mechanisms underlying the fusarium wilt resistance of plants.

Notes

Acknowledgements

This research was supported by the Korea Institute of Planning and Evaluation for Technology in Food, Agriculture, Forestry and Fisheries through the Golden Seed Project, which is funded by the Ministry of Agriculture, Food and Rural Affairs (Grant Numbers 213006-05-3-SBO20 and 213006-05-3-SB110).

Author contribution statement

XY and LL designed the experiment, carried out the marker development, analyzed all data, and drafted the manuscript. LL and YM were participated in phenotype evaluations, and marker survey and genotyping, candidate gene identification. SSC participated in data analysis and modification of the manuscript. SYY interpreted the data and designed the experiment. YPL provided plant materials, conceived the study, and finalized the manuscript. SRC conceived and designed the study, participated as a director, and wrote the manuscript. All authors read and approved the final manuscript.

Compliance with ethical standards

Conflict of interest

The authors have no conflicts of interest to declare.

Supplementary material

122_2019_3461_MOESM1_ESM.pdf (1.2 mb)
Supplementary Fig. 1(a) Multiple sequence alignment and phylogenetic analysis of the following Cruciferae species and proteins: Arabidopsis thaliana (AT3G53030), Raphanus sativus paralog of RS258060 (Rs568250), R. sativus SRPK reference sequence (Rs258060), ‘B2’ SRPK (Rs258060), ‘835’ SRPK (Rs258060), Brassica rapa (Bra006970), Brassica oleracea (Bol025090), Brassica napus (GSBRNA2T00109131001), Brassica juncea (BjuA035510), Zea mays (ONM09221.1), Oryza sativa (XP_015630587.1), Solanum lycopersicum (XP_004250999.1), and Capsicum annuum (XP_016547285.1). (a) Multiple sequence alignment of 13 sequences. The fully conserved residues are indicated in black, whereas the residues with a lower degree of conservation are indicated in gray. Various conserved kinase subdomains are marked with Roman numerals above the aligned sequences (PDF 1193 kb)
122_2019_3461_MOESM2_ESM.tif (468 kb)
Supplementary Fig. 1(b) Phylogenetic relationships among 13 SRPK sequences from radish (‘B2’ and ‘835’) and other plant species. The ‘B2’ SRPK is relatively closely related to a sequence encoded in the radish reference genome. The phylogenetic tree was constructed according to the neighbor-joining method of CLUSTAL W (Thompson et al. 1997). (TIFF 468 kb)
122_2019_3461_MOESM3_ESM.xlsx (16 kb)
Supplementary material 3 (XLSX 16 kb)
122_2019_3461_MOESM4_ESM.xlsx (12 kb)
Supplementary material 4 (XLSX 12 kb)
122_2019_3461_MOESM5_ESM.xlsx (10 kb)
Supplementary material 5 (XLSX 10 kb)
122_2019_3461_MOESM6_ESM.xlsx (10 kb)
Supplementary material 6 (XLSX 9 kb)

References

  1. Branham SE, Levi A, Katawczik M, Fei Z, Wechter WP (2018) Construction of a genome-anchored, high-density genetic map for melon (Cucumis melo L.) and identification of Fusarium oxysporum f. sp. melonis race 1 resistance QTL. Theor Appl Genet 131(4):829–837PubMedCrossRefPubMedCentralGoogle Scholar
  2. Brotman Y, Normantovich M, Goldenberg Z, Zvirin Z, Kovalski I, Stovbun N, Doniger T, Bolger AM, Troadec C, Bendahmane A, Cohen R, Katzir N, Pitrat M, Dogimont C, Perl-Treves R (2013) Dual resistance of melon to Fusarium oxysporum races 0 and 2 and to Papaya ring-spot virus is controlled by a pair of head-to-head-oriented NB-LRR genes of unusual architecture. Mol Plant 6:235–238PubMedCrossRefPubMedCentralGoogle Scholar
  3. Brueggeman R, Druka A, Nirmala J, Cavileer T, Drader T, Rostoks N, Mirlohi A, Bennypaul H, Gill U, Kudrna D, Whitelaw C, Kilian A, Han F, Sun Y, Gill K, Steffenson B, Kleinhofs A (2008) The stem rust resistance gene Rpg5 encodes a protein with nucleotide-binding-site, leucine-rich, and protein kinase domains. Proc Natl Acad Sci 105:14970–14975PubMedCrossRefPubMedCentralGoogle Scholar
  4. Cao A, Xing L, Wang X, Yang X, Wang W, Sun Y, Qian C, Ni J, Chen Y, Liu D, Wang X, Chen P (2011) Serine/threonine kinase gene Stpk-V, a key member of powdery mildew resistance gene Pm21, confers powdery mildew resistance in wheat. Proc Natl Acad Sci 108:7727–7732PubMedCrossRefPubMedCentralGoogle Scholar
  5. Catanzariti AM, Lim GT, Jones DA (2015) The tomato I-3 gene: a novel gene for resistance to Fusarium wilt disease. New Phytol 207:106–118PubMedCrossRefPubMedCentralGoogle Scholar
  6. Catanzariti AM, Do HT, Bru P, de Sain M, Thatcher LF, Rep M, Jones DA (2017) The tomato I gene for Fusarium wilt resistance encodes an atypical leucine-rich repeat receptor-like protein whose function is nevertheless dependent on SOBIR 1 and SERK 3/BAK 1. Plant J 89(6):1195–1209PubMedCrossRefPubMedCentralGoogle Scholar
  7. Chakraborty J, Ghosh P, Sen S, Nandi AK, Das S (2019) CaMPK9 increases the stability of CaWRKY40 transcription factor which triggers defense response in chickpea upon Fusarium oxysporum f. sp. ciceri Race1 infection. Plant Mol Biol 100:411–431PubMedCrossRefPubMedCentralGoogle Scholar
  8. Cole SJ, Diener AC (2013) Diversity in receptor-like kinase genes is a major determinant of quantitative resistance to Fusarium oxysporum f.sp. matthioli. New Phytol 200(1):172–184PubMedCrossRefPubMedCentralGoogle Scholar
  9. de Boer M, Bom P, Kindt F, Keurentjes JJ, van der Sluis I, van Loon LC, Bakker PA (2003) Control of fusarium wilt of radish by combining Pseudomonas putida strains that have different disease-suppressive mechanisms. Phytopathol 93:626–632CrossRefGoogle Scholar
  10. van Bentem S, Anrather D, Roitinger E, Djamei A, Hufnagl T, Barta A, Csaszar E, Dohnal I, Lecourieux D, Hirt H (2006) Phosphoproteomics reveals extensive in vivo phosphorylation of Arabidopsis proteins involved in RNA metabolism. Nucleic Acids Res 34:3267–3278CrossRefGoogle Scholar
  11. Diener AC, Ausubel FM (2005) Resistance to Fusarium Oxysporum 1, a dominant Arabidopsis disease-resistance gene, is not race specific. Genetics 171:305–321PubMedPubMedCentralCrossRefGoogle Scholar
  12. Dinesh-Kumar SP, Baker BJ (2000) Alternatively spliced N resistance gene transcripts: their possible role in tobacco mosaic virus resistance. Proc Natl Acad Sci 97:1908–1913PubMedCrossRefGoogle Scholar
  13. Dinolfo MI, Castanares E, Stenglein SA (2017) Fusarium-plant interaction: state of the art—a review. Plant Protect Sci 53:61–70CrossRefGoogle Scholar
  14. Durrant WE, Dong X (2004) Systemic acquired resistance. Annu Rev Phytopathol 42:185–209PubMedCrossRefPubMedCentralGoogle Scholar
  15. Edgar CI, McGrath KC, Dombrecht B, Manners JM, Maclean DC, Schenk PM, Kazan K (2006) Salicylic acid mediates resistance to the vascular wilt pathogen Fusarium oxysporum in the model host Arabidopsis thaliana. Australas Plant Path 35(6):581–591CrossRefGoogle Scholar
  16. Giannakouros T, Nikolakaki E, Mylonis I, Georgatsou E (2011) Serine-arginine protein kinases: a small protein kinase family with a large cellular presence. FEBS J 278(4):570–586PubMedCrossRefPubMedCentralGoogle Scholar
  17. Gonzalez-Cendales Y, Catanzariti AM, Baker B, McGrath DJ, Jones DA (2016) Identification of I-7 expands the repertoire of genes for resistance to Fusarium wilt in tomato to three resistance gene classes. Mol Plant Pathol 17(3):448–463PubMedCrossRefPubMedCentralGoogle Scholar
  18. Hanks SK (2003) Genomic analysis of the eukaryotic protein kinase superfamily: a perspective. Genome Biol 4:111PubMedPubMedCentralCrossRefGoogle Scholar
  19. Hemming MN, Basuki S, McGrath DJ, Carroll BJ, Jones DA (2004) Fine mapping of the tomato I-3 gene for fusarium wilt resistance and elimination of a co-segregating resistance gene analogue as a candidate for I-3. Theor Appl Genet 109:409–418PubMedCrossRefPubMedCentralGoogle Scholar
  20. Husaini AM, Sakina A, Cambay SR (2018) Host–pathogen interaction in Fusarium oxysporum infections: Where do we stand? Mol Plant Microbe In 31:889–898CrossRefGoogle Scholar
  21. Joobeur T, King JJ, Nolin SJ, Thomas CE, Dean RA (2004) The Fusarium wilt resistance locus Fom-2 of melon contains a single resistance gene with complex features. Plant J 39:283–297PubMedCrossRefGoogle Scholar
  22. Kamei A, Tsuro M, Kubo N, Hayashi T, Wang N, Fujimura T, Hirai M (2010) QTL mapping of clubroot resistance in radish (Raphanus sativus L.). Theor Appl Genet 120:1021–1027PubMedCrossRefGoogle Scholar
  23. Kaneko Y, Kimizukaa-Takagi C, Bang SW, Matsuzawa Y (2007) Radish. In: Kole C (ed) Genome mapping and nolecular breeding in plant, vol 5. Springer, New York, pp 141–160Google Scholar
  24. Kim H, Hwang SM, Lee JH, Oh M, Han JW, Choi GJ (2017) Specific PCR detection of Fusarium oxysporum f. sp. raphani: a causal agent of Fusarium wilt on radish plants. Lett Appl Microbiol 65:133–140PubMedCrossRefGoogle Scholar
  25. Kitashiba H, Li F, Hirakawa H, Kawanabe T, Zou Z, Hasegawa Y, Tonosaki K, Shirasawa S, Fukushima A, Yokoi S, Takahata Y, Kakizaki T, Ishida M, Okamoto S, Sakamoto K, Shirasawa K, Tabata S, Nishio T (2014) Draft sequences of the radish (Raphanus sativus L.) genome. DNA Res 21:481–490PubMedPubMedCentralCrossRefGoogle Scholar
  26. Kumar Y, Zhang L, Panigrahi P, Dholakia BB, Dewangan V, Chavan SG, Kunjir SM, Wu X, Li N, Rajmohanan PR, Kadoo NY, Giri AP, Tang H, Gupta VS (2016) Fusarium oxysporum mediates systems metabolic reprogramming of chickpea roots as revealed by a combination of proteomics and metabolomics. Plant Biotechnol J 14:1589–1603PubMedPubMedCentralCrossRefGoogle Scholar
  27. Li H, Durbin R (2009) Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics 25(14):1754–1760PubMedPubMedCentralCrossRefGoogle Scholar
  28. Lievens B, Rep M, Thomma BP (2008) Recent developments in the molecular discrimination of formae speciales of Fusarium oxysporum. Pest Manag Sci 64(8):781–788PubMedCrossRefGoogle Scholar
  29. Lv H, Fang Z, Yang L, Zhang Y, Wang Q, Liu Y, Zhuang M, Yang Y, Xie B, Liu B, Liu J, Kang J, Wang X (2014) Mapping and analysis of a novel candidate Fusarium wilt resistance gene FOC1 in Brassica oleracea. BMC Genom 15:1094CrossRefGoogle Scholar
  30. Marchler-Bauer A, Derbyshire MK, Gonzales NR, Lu S, Chitsaz F, Geer LY, Geer RC, He J, Gwadz M, Hurwitz DI, Lanczycki CJ, Lu F, Marchler GH, Song JS, Thanki N, Wang Z, Yamashita RA, Zhang D, Zheng C, Bryant SH (2014) CDD: NCBI’s conserved domain database. Nucleic Acids Res 43:D222–D226PubMedPubMedCentralCrossRefGoogle Scholar
  31. Martin GB, Brommonschenkel SH, Chunwongse J, Frary A, Ganal MW, Spivey R, Wu T, Earle ED, Tanksley SD (1993) Map-based cloning of a protein kinase gene conferring disease resistance in tomato. Science 262:1432–1436PubMedCrossRefPubMedCentralGoogle Scholar
  32. Matic S, Gilardi G, Gullino ML, Garibaldi A (2018) Evidence for an expanded host range of Fusarium oxysporum f. sp chrysanthemi. J Plant Pathol 100:97–104CrossRefGoogle Scholar
  33. McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, Garimella K, Altshuler D, Gabriel S, Daly M, DePristo MA (2010) The genome analysis toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res 20:1297–1303PubMedPubMedCentralCrossRefGoogle Scholar
  34. Michielse CB, Rep M (2009) Pathogen profile update: Fusarium oxysporum. Mol Plant Pathol 10:311–324PubMedPubMedCentralCrossRefGoogle Scholar
  35. Mun JH, Chung H, Chung WH, Oh M, Jeong YM, Kim N, Ahn BO, Park BS, Park S, Lim KB, Hwang YJ, Yu HJ (2015) Construction of a reference genetic map of Raphanus sativus based on genotyping by whole-genome resequencing. Theor Appl Genet 128(2):259–272PubMedCrossRefPubMedCentralGoogle Scholar
  36. Oumouloud A, El-Otmani M, Chikh-Rouhou H, Claver AG, Torres RG, Perl-Treves R, Alvarez JM (2013) Breeding melon for resistance to Fusarium wilt: recent developments. Euphytica 192:155–169CrossRefGoogle Scholar
  37. Perchepied L, Pitrat M (2004) Polygenic inheritance of partial resistance to Fusarium oxysporum f. sp. melonis Race 1.2 in Melon. Phytopathology 94:1331–1336PubMedCrossRefPubMedCentralGoogle Scholar
  38. Ren Y, Jiao D, Gong G, Zhang H, Guo S, Zhang J, Xu Y (2015) Genetic analysis and chromosome mapping of resistance to Fusarium oxysporum f. sp. niveum (FON) race 1 and race 2 in watermelon (Citrullus lanatus L.). Mol Breed 35:183PubMedPubMedCentralCrossRefGoogle Scholar
  39. Romeis T (2001) Protein kinases in the plant defence response. Curr Opin Plant Biol 4:407–414PubMedCrossRefPubMedCentralGoogle Scholar
  40. Rommens CM, Salmeron JM, Oldroyd GE, Staskawicz BJ (1995) Intergeneric transfer and functional expression of the tomato disease resistance gene Pto. Plant Cell 7:1537–1544PubMedPubMedCentralGoogle Scholar
  41. Ryals JA, Neuenschwander UH, Willits MG, Molina A, Steiner HY, Hunt MD (1996) Systemic acquired resistance. Plant Cell 8:1809–1819PubMedPubMedCentralCrossRefGoogle Scholar
  42. Schranz ME, Lysak MA, Mitchell-Olds T (2006) The ABC’s of comparative genomics in the Brassicaceae: building blocks of crucifer genomes. Trends Plant Sci 11:535–542PubMedCrossRefPubMedCentralGoogle Scholar
  43. Shen Y, Diener AC (2013) Arabidopsis thaliana resistance to fusarium oxysporum 2 implicates tyrosine-sulfated peptide signaling in susceptibility and resistance to root infection. PLoS Genet 9:e1003525PubMedPubMedCentralCrossRefGoogle Scholar
  44. Shimizu M, Fujimoto R, Ying H, Pu ZJ, Ebe Y, Kawanabe T, Saeki N, Taylor JM, Kaji M, Dennis ES, Okazaki K (2014) Identification of candidate genes for Fusarium yellows resistance in Chinese cabbage by differential expression analysis. Plant Mol Biol 85:247–257PubMedCrossRefPubMedCentralGoogle Scholar
  45. Shimizu M, Pu ZJ, Kawanabe T, Kitashiba H, Matsumoto S, Ebe Y, Sano M, Funaki T, Fukai E, Fujimoto R, Okazaki K (2015) Map-based cloning of a candidate gene conferring Fusarium yellows resistance in Brassica oleracea. Theor Appl Genet 128:119–130PubMedCrossRefPubMedCentralGoogle Scholar
  46. Shirasawa K, Oyama M, Hirakawa H, Sato S, Tabata S, Fujioka T, Kimizuka-Takagi C, Sasamoto S, Watanabe A, Kato M, Kishida Y, Kohara M, Takahashi C, Tsuruoka H, Wada T, Sakai T, Isobe S (2011) An EST-SSR linkage map of Raphanus sativus and comparative genomics of the Brassicaceae. DNA Res 18:221–232PubMedPubMedCentralCrossRefGoogle Scholar
  47. Simons G, Groenendijk J, Wijbrandi J, Reijans M, Groenen J, Diergaarde P, Van der Lee T, Bleeker M, Onstenk J, de Both M, Haring M, Mes J, Cornelissen B, Zabeau M, Vos P (1998) Dissection of the fusarium I2 gene cluster in tomato reveals six homologs and one active gene copy. Plant Cell 10:1055–1068PubMedPubMedCentralCrossRefGoogle Scholar
  48. Song WY, Wang GL, Chen LL, Kim HS, Pi LY, Holsten T, Gardner J, Wang B, Zhai WX, Zhu LH, Fauquet C, Ronald P (1995) A receptor kinase-like protein encoded by the rice disease resistance gene, Xa21. Science 270:1804–1806PubMedCrossRefGoogle Scholar
  49. Stam P (1993) Construction of integrated genetic linkage maps by means of a new computer package: JoinMap. Plant J 3:739–744CrossRefGoogle Scholar
  50. Swarupa V, Ravishankar KV, Rekha A (2014) Plant defense response against Fusarium oxysporum and strategies to develop tolerant genotypes in banana. Planta 239(4):735–751PubMedCrossRefGoogle Scholar
  51. Swiderski MR, Innes RW (2001) The Arabidopsis PBS1 resistance gene encodes a member of a novel protein kinase subfamily. Plant J 26:101–112PubMedCrossRefGoogle Scholar
  52. Untergasser A, Cutcutache I, Koressaar T, Ye J, Faircloth BC, Remm M, Rozen SG (2012) Primer3-new capabilities and interfaces. Nucleic Acids Res 40(15):e115PubMedPubMedCentralCrossRefGoogle Scholar
  53. Van Ooijen JW (2006) JoinMap®4, software for the calculation of genetic linkage maps in experimental populations. Kyazma BV, WageningenGoogle Scholar
  54. Wang S, Basten CJ, Zeng ZB (2006) Windows QTL Cartographer V2.5. User manual. Bioinformatics Research Centre; North Carolina State University, RaleighGoogle Scholar
  55. Warren RF, Henk A, Mowery P, Holub E, Innes RW (1998) A mutation within the leucine-rich repeat domain of the Arabidopsis disease resistance gene RPS5 partially suppresses multiple bacterial and downy mildew resistance genes. Plant Cell 10:1439–1452PubMedPubMedCentralCrossRefGoogle Scholar
  56. Xing M, Lv H, Ma J, Xu D, Li H, Yang L, Kang J, Wang X, Fang Z (2016) Transcriptome profiling of resistance to Fusarium oxysporum f. sp. conglutinans in Cabbage (Brassica oleracea) roots. PLoS ONE 11:e0148048PubMedPubMedCentralCrossRefGoogle Scholar
  57. Yu X, Choi SR, Ramchiary N, Miao X, Lee SH, Sun HJ, Kim S, Ahn CH, Lim YP (2013) Comparative mapping of Raphanus sativus genome using Brassica markers and quantitative trait loci analysis for the Fusarium wilt resistance trait. Theor Appl Genet 126:2553–2562PubMedCrossRefGoogle Scholar
  58. Yu X, Choi SR, Dhandapani V, Rameneni JJ, Li X, Pang W, Lee JY, Lim YP (2016) Quantitative trait loci for morphological traits and their association with functional genes in Raphanus sativus. Front Plant Sci 7:255PubMedPubMedCentralGoogle Scholar
  59. Zhang XC, Gassmann W (2003) RPS4-mediated disease resistance requires the combined presence of RPS4 transcripts with full-length and truncated open reading frames. Plant Cell 15:2333–2342PubMedPubMedCentralCrossRefGoogle Scholar
  60. Zou Z, Ishida M, Li F, Kakizaki T, Suzuki S, Kitashiba H, Nishio T (2013) QTL analysis using SNP markers developed by next-generation sequencing for identification of candidate genes controlling 4-methylthio-3-butenyl glucosinolate contents in roots of radish, Raphanus sativus L. PloS One 8:e53541PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Molecular Genetics and Genomics Laboratory, Department of HorticultureChungnam National UniversityDaejeonKorea
  2. 2.Agronomy DepartmentQingdao Agricultural UniversityQingdaoChina

Personalised recommendations