Alternative splicing of a barley gene results in an excess-tillering and semi-dwarf mutant

  • Wei Hua
  • Cong Tan
  • Jingzhong Xie
  • Jinghuan Zhu
  • Yi Shang
  • Jianming Yang
  • Xiao-Qi Zhang
  • Xiaojian Wu
  • Junmei WangEmail author
  • Chengdao LiEmail author
Original Article


Key message

An excess-tillering semi-dwarf gene Hvhtd was identified from an EMS-induced mutant in barley and alternative splicing results in excess-tillering semi-dwarf traits.


Tillering and plant height are important traits determining plant architecture and grain production in cereal crops. This study identified an excess-tillering semi-dwarf mutant (htd) from an EMS-treated barley population. Genetic analysis of the F1, F2, and F2:3 populations showed that a single recessive gene controlled the excess-tillering semi-dwarf in htd. Using BSR-Seq and gene mapping, the Hvhtd gene was delimited within a 1.8 Mb interval on chromosome 2HL. Alignment of the RNA-Seq data with the functional genes in the interval identified a gene HORVU2Hr1G098820 with alternative splicing between exon2 and exon3 in the mutant, due to a G to A single-nucleotide substitution at the exon and intron junction. An independent mutant with a similar phenotype confirmed the result, with alternative splicing between exon3 and exon4. In both cases, the alternative splicing resulted in a non-functional protein. And the gene HORVU2Hr1G098820 encodes a trypsin family protein and may be involved in the IAA signaling pathway and differs from the mechanism of Green Revolution genes in the gibberellic acid metabolic pathway.



We thank Professor Jerome Franckowiak (North Dakota State University) for providing the Bowman NILs. This work was supported by the Natural Science Foundation of Zhejiang Province (Grant No. Y20C130024), the National Natural Science Foundation of China (Grant No. 31571659, 31101149), the China Scholarship Council in 2017, National Key R&D Program of China (2018YFD0200500), the Key Research Foundation of Science and Technology Department of Zhejiang Province of China (2016C02050-9), China Agriculture Research System (CARS-05) and the GRDC (UMU00050).

Author contribution statement

WH and CL conceived the project; WH, CT, JHZ, YS, XQZ, JMW, XJW, JMY performed the research; WH, CT, JZX, and CL analyzed the data. WH and CL wrote the article with contributions from all authors.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

122_2019_3448_MOESM1_ESM.docx (26 kb)
Supplementary material 1 (DOCX 25 kb)
122_2019_3448_MOESM2_ESM.docx (15 kb)
Supplementary material 2 (DOCX 15 kb)


  1. Alqudah AM, Koppolu R, Wolde GM, Graner A, Schnurbusch T (2016) The Genetic Architecture of Barley Plant Stature. Front Genet 7:117CrossRefPubMedPubMedCentralGoogle Scholar
  2. Andrews S (2010) FastQC: a quality control tool for high throughput sequence data.
  3. Arite T, Iwata H, Ohshima K, Maekawa M, Nakajima M, Kojima M, Sakakibara H, Kyozuka J (2007) DWARF10, an RMS1/MAX4/DAD1 ortholog, controls lateral bud outgrowth in rice. Plant J 51:1019–1029CrossRefGoogle Scholar
  4. Arite T, Umehara M, Ishikawa S, Hanada A, Maekawa M, Yamaguchi S, Kyozuka J (2009) d14, a strigolactone-insensitive mutant of rice, shows an accelerated outgrowth of tillers. Plant Cell Physiol 50:1416–1424CrossRefGoogle Scholar
  5. Babb S, Muehlbauer GJ (2003) Genetic and morphological characterization of the barley uniculm2 (cul2) mutant. Theor Appl Genet 106:846–857CrossRefGoogle Scholar
  6. Bolger AM, Lohse M, Usadel B (2014) Trimmomatic: a flexible trimmer for illumina sequence data. Bioinformatics 30:2114–2120CrossRefPubMedPubMedCentralGoogle Scholar
  7. Chepelev I, Wei G, Tang Q, Zhao K (2009) Detection of single nucleotide variations in expressed exons of the human genome using RNA-Seq. Nucleic Acids Res 37:e106CrossRefPubMedPubMedCentralGoogle Scholar
  8. Cho S-H, Yoo S-C, Zhang H, Lim J-H, Paek N-C (2014) Rice NARROW LEAF1 regulates leaf and adventitious root development. Plant Mol Biol Rep 32:270–281CrossRefGoogle Scholar
  9. Chono M, Honda I, Zeniya H, Yoneyama K, Saisho D, Takeda K, Takatsuto S, Hoshino T, Watanabe Y (2003) A semidwarf phenotype of barley uzu results from a nucleotide substitution in the gene encoding a putative brassinosteroid receptor. Plant Physiol 133(3):1209–1219CrossRefPubMedPubMedCentralGoogle Scholar
  10. Cingolani P, Platts A, Wang LL, Coon M, Nguyen T, Wang L, Land SJ, Lu XY, Ruden DM (2012) A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w(1118); iso-2; iso-3. Fly 6:80–92CrossRefPubMedPubMedCentralGoogle Scholar
  11. Consortium IBGS (2012) A physical, genetic and functional sequence assembly of the barley genome. Nature 491:711–716CrossRefGoogle Scholar
  12. Dabbert T, Okagaki RJ, Cho S, Boddu J, Muehlbauer GJ (2009) The genetics of barley low-tillering mutants: absent lower laterals (als). Theor Appl Genet 118:1351–1360CrossRefGoogle Scholar
  13. Dabbert T, Okagaki RJ, Cho S, Heinen S, Boddu J, Muehlbauer GJ (2010) The genetics of barley low-tillering mutants: low number of tillers-1 (lnt1). Theor Appl Genet 121:705–715CrossRefGoogle Scholar
  14. Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, Batut P, Chaisson M, Gingeras TR (2013) STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29:15–21CrossRefPubMedPubMedCentralGoogle Scholar
  15. Druka A, Franckowiak J, Lundqvist U, Bonar N, Alexander J, Houston K, Radovic S, Shahinnia F, Vendramin V, Morgante M (2011) Genetic dissection of barley morphology and development. Plant Physiol 155:617–627CrossRefGoogle Scholar
  16. Evers JB, Vos J (2013) Modeling branching in cereals. Front Plant Sci 4:399CrossRefPubMedPubMedCentralGoogle Scholar
  17. Franckowiak JD (2014) Descriptions of barley genetic stocks for 2014. Barley Genet Newslett 44(88–89):181–182Google Scholar
  18. Franckowiak JD, Lundqvist U (2013) Descriptions of barley genetic stocks for 2013. Barley Genet Newslett 43:69Google Scholar
  19. Hedden P (2003) The genes of the green revolution. Trends Genet 19:5–9CrossRefGoogle Scholar
  20. Hussien A, Tavakol E, Horner DS, Muñoz-Amatriaín M, Muehlbauer GJ, Rossini L (2014) Genetics of tillering in rice and barley. Plant Genome 7:1–20CrossRefGoogle Scholar
  21. Ishikawa S, Maekawa M, Arite T, Onishi K, Takamure I, Kyozuka J (2005) Suppression of tiller bud activity in tillering dwarf mutants of rice. Plant Cell Physiol 46:79–86CrossRefGoogle Scholar
  22. Jia Q, Zhang J, Westcott S, Zhang X-Q, Bellgard M, Lance R, Li C (2009) GA-20 oxidase as a candidate for the semidwarf gene sdw1/denso in barley. Funct Integr Genomic 9:255–262CrossRefGoogle Scholar
  23. Kebrom TH, Spielmeyer W, Finnegan EJ (2013) Grasses provide new insights into regulation of shoot branching. Trends Plant Sci 18:41–48CrossRefGoogle Scholar
  24. Kersey PJ, Allen JE, Christensen M, Davis P, Falin LJ, Grabmueller C, Hughes DS, Humphrey J, Kerhornou A, Khobova J, Langridge N, McDowall MD, Maheswari U, Maslen G, Nuhn M, Ong CK, Paulini M, Pedro H, Toneva I, Tuli MA, Walts B, Williams G, Wilson D, Youens-Clark K, Monaco MK, Stein J, Wei X, Ware D, Bolser DM, Howe KL, Kulesha E, Lawson D, Staines DM (2014) Ensembl genomes 2013: scaling up access to genome-wide data. Nucleic Acids Res 42:546–552CrossRefGoogle Scholar
  25. Koornneef M, Dellaert L, Van der Veen J (1982) EMS-and radiation-induced mutation frequencies at individual loci in Arabidopsis thaliana (L.) Heynh. Mutat Res 93:109–123CrossRefGoogle Scholar
  26. Kosambi DD (1943) The estimation of map distances from recombination values. Ann Hum Genet 12:172–175Google Scholar
  27. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R, Genome Project Data Processing S (2009) The sequence alignment/map format and SAMtools. Bioinformatics 25:2078–2079CrossRefPubMedPubMedCentralGoogle Scholar
  28. Li L, Li D, Liu S, Ma X, Dietrich CR, Hu HC, Zhang G, Liu Z, Zheng J, Wang G, Schnable PS (2013) The maize glossy13 gene, cloned via BSR-Seq and Seq-walking encodes a putative ABC transporter required for the normal accumulation of epicuticular waxes. PLoS ONE 8:e82333CrossRefPubMedPubMedCentralGoogle Scholar
  29. Li M, Li B, Guo G, Chen Y, Xie J, Lu P, Wu Q, Zhang D, Zhang H, Yang J, Zhang P, Zhang Y, Liu Z (2018) Mapping a leaf senescence gene els1 by BSR-Seq in common wheat. Crop J 6:236–243CrossRefGoogle Scholar
  30. Liang WH, Shang F, Lin QT, Lou C, Zhang J (2014) Tillering and panicle branching genes in rice. Gene 537:1–5CrossRefGoogle Scholar
  31. Lin H, Wang R, Qian Q, Yan M, Meng X, Fu Z, Yan C, Jiang B, Su Z, Li J, Wang Y (2009) DWARF27, an iron-containing protein required for the biosynthesis of strigolactones, regulates rice tiller bud outgrowth. Plant Cell 21:1512–1525CrossRefPubMedPubMedCentralGoogle Scholar
  32. Lincoln SE, Daly MJ, Lander ES (1993) Constructing genetic linkage maps with MAPMAKER/EXP Version 3.0: a tutorial and reference manual. A Whitehead Institute for Biomedical Research technical report 3Google Scholar
  33. Liu S, Yeh C-T, Tang HM, Nettleton D, Schnable PS (2012) Gene mapping via bulked segregant RNA-Seq (BSR-Seq). PLoS ONE 7:e36406PubMedPubMedCentralGoogle Scholar
  34. Mascher M, Jost M, Kuon J-E, Himmelbach A, Aßfalg A, Beier S, Scholz U, Graner A, Stein N (2014) Mapping-by-sequencing accelerates forward genetics in barley. Genome Biol 15:R78CrossRefPubMedPubMedCentralGoogle Scholar
  35. Mascher M, Gundlach H, Himmelbach A, Beier S, Twardziok SO, Wicker T, Radchuk V, Dockter C, Hedley PE, Russell J (2017) A chromosome conformation capture ordered sequence of the barley genome. Nature 544:427–433CrossRefGoogle Scholar
  36. McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, Garimella K, Altshuler D, Gabriel S, Daly M, DePristo MA (2010) The genome analysis toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res 20:1297–1303CrossRefPubMedPubMedCentralGoogle Scholar
  37. McSteen P, Leyser O (2005) Shoot branching. Annu Rev Plant Biol 56:353–374CrossRefGoogle Scholar
  38. Michelmore RW, Paran I, Kesseli R (1991) Identification of markers linked to disease-resistance genes by bulked segregant analysis: a rapid method to detect markers in specific genomic regions by using segregating populations. Proc Natl Acad Sci USA 88:9828–9832CrossRefGoogle Scholar
  39. Milach S, Federizzi L (2001) Dwarfing genes in plant improvement. Adv Agron 73:35–63CrossRefGoogle Scholar
  40. Monna L, Kitazawa N, Yoshino R, Suzuki J, Masuda H, Maehara Y, Tanji M, Sato M, Nasu S, Minobe Y (2002) Positional cloning of rice semidwarfing gene, sd-1: rice “green revolution gene” encodes a mutant enzyme involved in gibberellin synthesis. DNA Res 9:11–17CrossRefPubMedGoogle Scholar
  41. Mortazavi A, Williams BA, McCue K, Schaeffer L, Wold B (2008) Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat Methods 5:621–628CrossRefGoogle Scholar
  42. Pearce S, Tabbita F, Cantu D, Buffalo V, Avni R, Vazquez-Gross H, Zhao R, Conley CJ, Distelfeld A, Dubcovksy J (2014) Regulation of Zn and Fe transporters by the GPC1 gene during early wheat monocarpic senescence. BMC Plant Biol 14:368–391CrossRefPubMedPubMedCentralGoogle Scholar
  43. Peng J, Richards DE, Hartley NM, Murphy GP, Devos KM, Flintham JE, Beales J, Fish LJ, Worland AJ, Pelica F (1999) ‘Green revolution’ genes encode mutant gibberellin response modulators. Nature 400:256–261CrossRefGoogle Scholar
  44. Qi J, Qian Q, Bu Q, Li S, Chen Q, Sun J, Liang W, Zhou Y, Chu C, Li X (2008) Mutation of the rice Narrow leaf1 gene, which encodes a novel protein, affects vein patterning and polar auxin transport. Plant Physiol 147:1947–1959CrossRefPubMedPubMedCentralGoogle Scholar
  45. Ramirez-Gonzalez RH, Segovia V, Bird N, Fenwick P, Holdgate S, Berry S, Jack P, Caccamo M, Uauy C (2015) RNA-Seq bulked segregant analysis enables the identification of high-resolution genetic markers for breeding in hexaploid wheat. Plant Biotechnol J 13:613–624CrossRefGoogle Scholar
  46. Ramsay L, Comadran J, Druka A, Marshall DF, Thomas WT, Macaulay M, MacKenzie K, Simpson C, Fuller J, Bonar N (2011) INTERMEDIUM-C, a modifier of lateral spikelet fertility in barley, is an ortholog of the maize domestication gene TEOSINTE BRANCHED 1. Nat Genet 43:169–172CrossRefGoogle Scholar
  47. Rio DC, Ares M, Hannon GJ, Nilsen TW (2010) Purification of RNA using TRIzol (TRI reagent). Cold Spring Harb Protoc. CrossRefPubMedGoogle Scholar
  48. Sakamoto T, Matsuoka M (2004) Generating high-yielding varieties by genetic manipulation of plant architecture. Curr Opin Biotech 15:144–147CrossRefGoogle Scholar
  49. Sasaki A, Ashikari M, Ueguchi-Tanaka M, Itoh H, Nishimura A, Swapan D, Ishiyama K, Saito T, Kobayashi M, Khush GS (2002) Green revolution: a mutant gibberellin-synthesis gene in rice. Nature 416:701–702CrossRefGoogle Scholar
  50. Shi L, Jiang C, He Q, Habekuß A, Ordon F, Luan H, Shen H, Liu J, Feng Z, Zhang J, Yang P (2019) Bulked segregant RNA-sequencing (BSR-seq) identified a novel rare allele of eIF4E effective against multiple isolates of BaYMV/BaMMV. Theor Appl Genet 132:1777–1788CrossRefGoogle Scholar
  51. Spielmeyer W, Ellis MH, Chandler PM (2002) Semidwarf (sd-1), “green revolution” rice, contains a defective gibberellin 20-oxidase gene. Proc Natl Acad Sci USA 99:9043–9048CrossRefGoogle Scholar
  52. Stein N, Herren G, Keller B (2001) A new DNA extraction method for high-throughput marker analysis in a large-genome species such as Triticum aestivum. Plant Breeding 120:354–356CrossRefGoogle Scholar
  53. Tang HM, Liu S, Hill-Skinner S, Wu W, Reed D, Yeh CT, Nettleton D, Schnable PS (2014) The maize brown midrib2 (bm2) gene encodes a methylenetetrahydrofolate reductase that contributes to lignin accumulation. Plant J 77:380–392CrossRefPubMedPubMedCentralGoogle Scholar
  54. Tavakol E, Okagaki R, Verderio G, Shariati JV, Hussien A, Bilgic H, Scanlon MJ, Todt NR, Close TJ, Druka A, Waugh R, Steuernagel B, Ariyadasa R, Himmelbach A, Stein N, Muehlbauer GJ, Rossini L (2015) The barley Uniculme4 gene encodes a BLADE-ON-PETIOLE-like protein that controls tillering and leaf patterning. Plant Physiol 168:164–174CrossRefPubMedPubMedCentralGoogle Scholar
  55. Trapnell C, Williams BA, Pertea G, Mortazavi A, Kwan G, van Baren MJ, Salzberg SL, Wold BJ, Pachter L (2010) Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat Biotechnol 28:511–515CrossRefPubMedPubMedCentralGoogle Scholar
  56. Wang Y, Li J (2008) Molecular basis of plant architecture. Annu Rev Plant Biol 59:253–279CrossRefGoogle Scholar
  57. Wang Y, Li J (2011) Branching in rice. Curr Opin Plant Biol 14:94–99CrossRefGoogle Scholar
  58. Wang Z, Gerstein M, Snyder M (2009) RNA-Seq: a revolutionary tool for transcriptomics. Nat Rev Genet 10:57–63CrossRefPubMedPubMedCentralGoogle Scholar
  59. Wang Y, Xie J, Zhang H, Guo B, Ning S, Chen Y, Lu P, Wu Q, Li M, Zhang D, Guo G, Zhang Y, Liu D, Zou S, Tang J, Zhao H, Wang X, Li J, Yang W, Cao T, Yin G, Liu Z (2017) Mapping stripe rust resistance gene YrZH22 in Chinese wheat cultivar Zhoumai 22 by bulked segregant RNA-Seq (BSR-Seq) and comparative genomics analyses. Theor Appl Genet 130:2191–2201CrossRefGoogle Scholar
  60. Wang Y, Zhang H, Xie J, Guo B, Chen Y, Zhang H, Lu P, Wu Q, Li M, Zhang D, Guo G, Yang J, Zhang P, Zhang Y, Wang X, Zhao H, Cao T, Liu Z (2018) Mapping stripe rust resistance genes by BSR-Seq: YrMM58 and YrHY1 on chromosome 2AS in Chinese wheat lines Mengmai 58 and Huaiyang 1 are Yr17. Crop J 6:91–98CrossRefGoogle Scholar
  61. Ward SP, Leyser O (2004) Shoot branching. Curr Opin Plant Biol 7:73–78CrossRefGoogle Scholar
  62. Wendt T, Holme I, Dockter C, Preuß A, Thomas W, Druka A, Waugh R, Hansson M, Braumann I (2016) HvDep1 is a positive regulator of culm elongation and grain size in barley and impacts yield in an environment-dependent manner. PLoS ONE 11(12):e0168924CrossRefPubMedPubMedCentralGoogle Scholar
  63. Wu P, Xie J, Hu J, Qiu D, Liu Z, Li J, Li M, Zhang H, Yang L, Liu H, Zhou Y, Zhang Z, Li H (2018) Development of molecular markers linked to powdery mildew resistance gene Pm4b by combining SNP discovery from transcriptome sequencing data with bulked segregant analysis (BSR-Seq) in wheat. Front Plant Sci 9:95CrossRefPubMedPubMedCentralGoogle Scholar
  64. Xu Y, Jia Q, Zhou G, Zhang X-Q, Angessa T, Broughton S, Yan G, Zhang W, Li C (2017) Characterization of the sdw1 semi-dwarf gene in barley. BMC Plant Biol 17:11CrossRefPubMedPubMedCentralGoogle Scholar
  65. Zhang J, Liu X (2006) Descriptors and data standard for barley (Hordeum vulgare L.). Chinese Agricultural Press, BeijingGoogle Scholar
  66. Zou J, Chen Z, Zhang S, Zhang W, Jiang G, Zhao X, Zhai W, Pan X, Zhu L (2005) Characterizations and fine mapping of a mutant gene for high tillering and dwarf in rice (Oryza sativa L.). Planta 222:604–612CrossRefGoogle Scholar
  67. Zou J, Zhang S, Zhang W, Li G, Chen Z, Zhai W, Zhao X, Pan X, Xie Q, Zhu L (2006) The rice HIGH-TILLERING DWARF1 encoding an ortholog of Arabidopsis MAX3 is required for negative regulation of the outgrowth of axillary buds. Plant J 48:687–698CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Zhejiang Academy of Agricultural SciencesHangzhouChina
  2. 2.Western Barley Genetics AllianceMurdoch UniversityMurdochAustralia
  3. 3.State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental BiologyChinese Academy of SciencesBeijingChina
  4. 4.Department of Primary Industry and Regional DevelopmentSouth PerthAustralia
  5. 5.Hubei Collaborative Innovation Centre for Grain IndustryYangtze UniversityJingzhouChina

Personalised recommendations