Advertisement

Theoretical and Applied Genetics

, Volume 132, Issue 8, pp 2367–2379 | Cite as

Use of near-isogenic lines to precisely map and validate a major QTL for grain weight on chromosome 4AL in bread wheat (Triticum aestivum L.)

  • Panfeng Guan
  • Na Di
  • Qing Mu
  • Xueyi Shen
  • Yongfa Wang
  • Xiaobo Wang
  • Kuohai Yu
  • Wanjun Song
  • Yongming Chen
  • Mingming Xin
  • Zhaorong Hu
  • Weilong Guo
  • Yingyin Yao
  • Zhongfu Ni
  • Qixin Sun
  • Huiru PengEmail author
Original Article

Abstract

Key message

This study precisely mapped and validated a major quantitative trait locus (QTL) on chromosome 4AL for thousand-grain weight in wheat using multiple near-isogenic lines.

Abstract

Thousand-grain weight (TGW) is an essential yield component. Following the previous identification of a major QTL for TGW within the interval of 15.7 cM (92.7–108.4 cM) on chromosome 4AL using the Nongda3338 (ND3338)/Jingdong6 (JD6) doubled haploid population, the aim of this study was to perform more precise mapping and validate the genetic effect of the QTL. Multiple near-isogenic lines (NILs) were developed using ND3338 as the recurrent parent through marker-assisted selection. Based on five independent BC3F3:4 segregating populations derived from BC3F3 plants with different heterozygous segments for the target QTL site and the results of genotyping analysis performed using the Wheat660 K SNP array, it was possible to delimit the QTL region to a physical interval of approximately 6.5 Mb (677.11–683.61 Mb, IWGSC Ref Seq v1.0). Field trials across multiple environments showed that NILsJD6 had a consistent effect on increasing the TGW by 5.16–27.48% and decreasing the grain number per spike (GNS) by 3.98–32.91% compared to the corresponding NILsND3338, which exhibited locus-specific TGW-GNS trade-offs. Moreover, by using RNA sequencing (RNA-Seq) of whole grains at 10 days after pollination stage of multiple NILs, we found that differentially expressed genes between the NIL pairs were significantly enriched for cell cycle and the replication of chromosome-related genes, hence affecting cell division and cell proliferation. Overall, our results provide a basis for map-based cloning of the major QTL and determining the mechanisms underlying TGW–GNS trade-offs in wheat, which would help to fine-tune these two components and maximize the grain yield for breeders.

Notes

Acknowledgements

This work was financially supported by the National Key Research and Development Program of China (Grant No. 2016YFD0100402) and China Postdoctoral Science Foundation (2018M641541).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

122_2019_3359_MOESM1_ESM.docx (1.1 mb)
Supplementary material 1 (DOCX 1086 kb)
122_2019_3359_MOESM2_ESM.xlsx (195 kb)
Supplementary material 2 (XLSX 195 kb)

References

  1. Avni R, Nave M, Barad O, Baruch K, Twardziok SO, Gundlach H, Hale I, Mascher M, Spannagl M, Wiebe K, Jordan KW, Golan G, Deek J, Ben-Zvi B, Ben-Zvi G, Himmelbach A, MacLachlan RP, Sharpe AG, Fritz A, Ben-David R, Budak H, Fahima T, Korol A, Faris JD, Hernandez A, Mikel MA, Levy AA, Steffenson B, Maccaferri M, Tuberosa R, Cattivelli L, Faccioli P, Ceriotti A, Kashkush K, Pourkheirandish M, Komatsuda T, Eilam T, Sela H, Sharon A, Ohad N, Chamovitz DA, Mayer KFX, Stein N, Ronen G, Peleg Z, Pozniak CJ, Akhunov ED, Distelfeld A (2017) Wild emmer genome architecture and diversity elucidate wheat evolution and domestication. Science 357:93–97.  https://doi.org/10.1126/science.aan0032 CrossRefGoogle Scholar
  2. Balcarkova B, Frenkel Z, Skopova M, Abrouk M, Kumar A, Chao S, Kianian SF, Akhunov E, Korol AB, Dolezel J, Valarik M (2016) A High Resolution Radiation Hybrid Map of Wheat Chromosome 4A. Front Plant Sci 7:2063.  https://doi.org/10.3389/fpls.2016.02063 Google Scholar
  3. Barrero JM, Cavanagh C, Verbyla KL, Tibbits JFG, Verbyla AP, Huang BE, Rosewarne GM, Stephen S, Wang PH, Whan A, Rigault P, Hayden MJ, Gubler F (2015) Transcriptomic analysis of wheat near-isogenic lines identifies PM19-A1 and A2 as candidates for a major dormancy QTL. Genome Biol 16:93.  https://doi.org/10.1186/s13059-015-0665-6 CrossRefGoogle Scholar
  4. Bolger AM, Lohse M, Usadel B (2014) Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30:2114–2120.  https://doi.org/10.1093/bioinformatics/btu170 CrossRefGoogle Scholar
  5. Brinton J, Simmonds J, Minter F, Leverington-Waite M, Snape J, Uauy C (2017) Increased pericarp cell length underlies a major quantitative trait locus for grain weight in hexaploid wheat. New Phytol 215:1026–1038.  https://doi.org/10.1111/nph.14624 CrossRefGoogle Scholar
  6. Brinton J, Simmonds J, Uauy C (2018) Ubiquitin-related genes are differentially expressed in isogenic lines contrasting for pericarp cell size and grain weight in hexaploid wheat. BMC Plant Biol 18(1):22.  https://doi.org/10.1186/s12870-018-1241-5 CrossRefGoogle Scholar
  7. Clavijo BJ, Venturini L, Schudoma C, Accinelli GG, Kaithakottil G, Wright J, Borrill P, Kettleborough G, Heavens D, Chapman H, Lipscombe J, Barker T, Lu FH, McKenzie N, Raats D, Ramirez-Gonzalez RH, Coince A, Peel N, Percival-Alwyn L, Duncan O, Trosch J, Yu GT, Bolser DM, Namaati G, Kerhornou A, Spannagl M, Gundlach H, Haberer G, Davey RP, Fosker C, Di Palma F, Phillips AL, Millar AH, Kersey PJ, Uauy C, Krasileva KV, Swarbreck D, Bevan MW, Clark MD (2017) An improved assembly and annotation of the allohexaploid wheat genome identifies complete families of agronomic genes and provides genomic evidence for chromosomal translocations. Genome Res 27:885–896.  https://doi.org/10.1101/gr.217117.116 CrossRefGoogle Scholar
  8. Dobin A, Gingeras TR (2015) Mapping RNA-seq Reads with STAR. Curr Protoc Bioinform 51:11–14.  https://doi.org/10.1002/0471250953.bi1114s51 Google Scholar
  9. Dvorak J, Wang L, Zhu T, Jorgensen CM, Luo MC, Deal KR, Gu YQ, Gill BS, Distelfeld A, Devos KM, Qi P, McGuire PE (2018) Reassessment of the evolution of wheat chromosomes 4A, 5A, and 7B. Theor Appl Genet 131:2451–2462.  https://doi.org/10.1007/s00122-018-3165-8 CrossRefGoogle Scholar
  10. Golan G, Ayalon I, Perry A, Zimran G, Ade-Ajayi T, Mosquna A, Distelfeld A, Peleg Z (2019) GNI-A1 mediates trade-off between grain number and grain weight in tetraploid wheat. Theor Appl Genet.  https://doi.org/10.1007/s00122-019-03358-5 Google Scholar
  11. Griffiths S, Wingen L, Pietragalla J, Garcia G, Hasan A, Miralles D, Calderini DF, Ankleshwaria JB, Waite ML, Simmonds J, Snape J, Reynolds M (2015) Genetic dissection of grain size and grain number trade-offs in CIMMYT wheat germplasm. PLoS ONE 10:e0118847.  https://doi.org/10.1371/journal.pone.0118847 CrossRefGoogle Scholar
  12. Guan P, Lu L, Jia L, Kabir MR, Zhang J, Lan T, Zhao Y, Xin M, Hu Z, Yao Y, Ni Z, Sun Q, Peng H (2018) Global QTL Analysis identifies genomic regions on chromosomes 4A and 4B harboring stable loci for yield-related traits across different environments in wheat (Triticum aestivum L.). Front Plant Sci 9:529.  https://doi.org/10.3389/fpls.2018.00529 CrossRefGoogle Scholar
  13. Guo Y, Sun J, Zhang G, Wang Y, Kong F, Zhao Y, Li S (2013) Haplotype, molecular marker and phenotype effects associated with mineral nutrient and grain size traits of TaGS1a in wheat. Field Crops Res 154:119–125.  https://doi.org/10.1016/j.fcr.2013.07.012 CrossRefGoogle Scholar
  14. Hanif M, Gao F, Liu J, Wen W, Zhang Y, Rasheed A, Xia X, He Z, Cao S (2015) TaTGW6-A1, an ortholog of rice TGW6, is associated with grain weight and yield in bread wheat. Mol Breed 36:1.  https://doi.org/10.1007/s11032-015-0425-z CrossRefGoogle Scholar
  15. Hernandez P, Martis M, Dorado G, Pfeifer M, Galvez S, Schaaf S, Jouve N, Simkova H, Valarik M, Dolezel J, Mayer KF (2012) Next-generation sequencing and syntenic integration of flow-sorted arms of wheat chromosome 4A exposes the chromosome structure and gene content. Plant J 69:377–386.  https://doi.org/10.1111/j.1365-313X.2011.04808.x CrossRefGoogle Scholar
  16. Hill K (2015) Post-translational modifications of hormone-responsive transcription factors: the next level of regulation. J Exp Bot 66:4933–4945.  https://doi.org/10.1093/jxb/erv273 CrossRefGoogle Scholar
  17. Hu MJ, Zhang HP, Cao JJ, Zhu XF, Wang SX, Jiang H, Wu ZY, Lu J, Chang C, Sun GL, Ma CX (2016) Characterization of an IAA-glucose hydrolase gene TaTGW6 associated with grain weight in common wheat (Triticum aestivum L.). Mol Breed 36:25.  https://doi.org/10.1007/s11032-016-0449-z CrossRefGoogle Scholar
  18. Huang RY, Jiang LR, Zheng JS, Wang TS, Wang HC, Huang YM, Hong ZL (2013) Genetic bases of rice grain shape: so many genes, so little known. Trends Plant Sci 18:218–226.  https://doi.org/10.1016/j.tplants.2012.11.001 CrossRefGoogle Scholar
  19. Hunter MC, Smith RG, Schipanski ME, Atwood LW, Mortensen DA (2017) Agriculture in 2050: recalibrating Targets for Sustainable Intensification. Bioscience 67:385–390.  https://doi.org/10.1093/biosci/bix010 CrossRefGoogle Scholar
  20. International Wheat Genome Sequencing Consortium (IWGSC) (2014) A chromosome-based draft sequence of the hexaploid bread wheat (Triticum aestivum) genome. Science 345:1251788.  https://doi.org/10.1126/science.1251788 CrossRefGoogle Scholar
  21. International Wheat Genome Sequencing Consortium (IWGSC), Appels R, Eversole K, Feuillet C et al (2018) Shifting the limits in wheat research and breeding using a fully annotated reference genome. Science 361(6403):eaar7191.  https://doi.org/10.1126/science.aar7191 CrossRefGoogle Scholar
  22. Jiang Y, Jiang Q, Hao C, Hou J, Wang L, Zhang H, Zhang S, Chen X, Zhang X (2015) A yield-associated gene TaCWI, in wheat: its function, selection and evolution in global breeding revealed by haplotype analysis. Theor Appl Genet 128:131–143.  https://doi.org/10.1007/s00122-014-2417-5 CrossRefGoogle Scholar
  23. Jofuku KD, Omidyar PK, Gee Z, Okamuro JK (2005) Control of seed mass and seed yield by the floral homeotic gene APETALA2. Proc Natl Acad Sci U S A 102:3117–3122.  https://doi.org/10.1073/pnas.0409893102 CrossRefGoogle Scholar
  24. Jorgensen C, Luo MC, Ramasamy R, Dawson M, Gill BS, Korol AB, Distelfeld A, Dvorak J (2017) A High-density genetic map of wild emmer wheat from the Karaca Dag region provides new evidence on the structure and evolution of wheat chromosomes. Front Plant Sci 8:1798.  https://doi.org/10.3389/fpls.2017.01798 CrossRefGoogle Scholar
  25. Kang GZ, Liu GQ, Peng XQ, Wei LT, Wang CY, Zhu YJ, Ma Y, Jiang YM, Guo TC (2013) Increasing the starch content and grain weight of common wheat by overexpression of the cytosolic AGPase large subunit gene. Plant Physiol Biochem 73:93–98.  https://doi.org/10.1016/j.plaphy.2013.09.003 CrossRefGoogle Scholar
  26. Krasileva KV, Vasquez-Gross HA, Howell T, Bailey P, Paraiso F, Clissold L, Simmonds J, Ramirez-Gonzalez RH, Wang XD, Borrill P, Fosker C, Ayling S, Phillips AL, Uauy C, Dubcovsky J (2017) Uncovering hidden variation in polyploid wheat. Proc Natl Acad Sci USA 114:E913–E921.  https://doi.org/10.1073/pnas.1619268114 CrossRefGoogle Scholar
  27. Kuchel H, Williams KJ, Langridge P, Eagles HA, Jefferies SP (2007) Genetic dissection of grain yield in bread wheat. I QTL analysis. Theor Appl Genet 115:1029–1041.  https://doi.org/10.1007/s00122-007-0629-7 CrossRefGoogle Scholar
  28. Li N, Li Y (2016) Signaling pathways of seed size control in plants. Curr Opin Plant Biol 33:23–32.  https://doi.org/10.1016/j.pbi.2016.05.008 CrossRefGoogle Scholar
  29. Li W, Yang B (2017) Translational genomics of grain size regulation in wheat. Theor Appl Genet 130(9):1765–1771.  https://doi.org/10.1007/s00122-017-2953-x CrossRefGoogle Scholar
  30. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R, Proc GPD (2009) The sequence alignment/map format and SAMtools. Bioinformatics 25:2078–2079.  https://doi.org/10.1093/bioinformatics/btp352 CrossRefGoogle Scholar
  31. Luo MC, Gu YQ, Puiu D, Wang H, Twardziok SO, Deal KR, Huo N, Zhu T, Wang L, Wang Y, McGuire PE, Liu S, Long H, Ramasamy RK, Rodriguez JC, Van SL, Yuan L, Wang Z, Xia Z, Xiao L, Anderson OD, Ouyang S, Liang Y, Zimin AV, Pertea G, Qi P, Bennetzen JL, Dai X, Dawson MW, Muller HG, Kugler K, Rivarola-Duarte L, Spannagl M, Mayer KFX, Lu FH, Bevan MW, Leroy P, Li P, You FM, Sun Q, Liu Z, Lyons E, Wicker T, Salzberg SL, Devos KM, Dvorak J (2017) Genome sequence of the progenitor of the wheat D genome Aegilops tauschii. Nature 551:498–502.  https://doi.org/10.1038/nature24486 CrossRefGoogle Scholar
  32. Ma D, Yan J, He Z, Wu L, Xia X (2012) Characterization of a cell wall invertase gene TaCwi-A1 on common wheat chromosome 2A and development of functional markers. Mol Breed 29:43–52.  https://doi.org/10.1007/s11032-010-9524-z CrossRefGoogle Scholar
  33. Ma J, Stiller J, Berkman PJ, Wei Y, Rogers J, Feuillet C, Dolezel J, Mayer KF, Eversole K, Zheng YL, Liu C (2013) Sequence-based analysis of translocations and inversions in bread wheat (Triticum aestivum L). PLoS One 8:e79329.  https://doi.org/10.1371/journal.pone.0079329 CrossRefGoogle Scholar
  34. Ma L, Li T, Hao C, Wang Y, Chen X, Zhang X (2016) TaGS5-3A, a grain size gene selected during wheat improvement for larger kernel and yield. Plant Biotechnol J 14:1269–1280.  https://doi.org/10.1111/pbi.12492 CrossRefGoogle Scholar
  35. McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, Garimella K, Altshuler D, Gabriel S, Daly M, DePristo MA (2010) The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res 20:1297–1303.  https://doi.org/10.1101/gr.107524.110 CrossRefGoogle Scholar
  36. Miftahudin Ross K, Ma XF, Mahmoud AA, Layton J, Milla MA, Chikmawati T, Ramalingam J, Feril O, Pathan MS, Momirovic GS, Kim S, Chema K, Fang P, Haule L, Struxness H, Birkes J, Yaghoubian C, Skinner R, McAllister J, Nguyen V, Qi LL, Echalier B, Gill BS, Linkiewicz AM, Dubcovsky J, Akhunov ED, Dvorak J, Dilbirligi M, Gill KS, Peng JH, Lapitan NL, Bermudez-Kandianis CE, Sorrells ME, Hossain KG, Kalavacharla V, Kianian SF, Lazo GR, Chao S, Anderson OD, Gonzalez-Hernandez J, Conley EJ, Anderson JA, Choi DW, Fenton RD, Close TJ, McGuire PE, Qualset CO, Nguyen HT, Gustafson JP (2004) Analysis of expressed sequence tag loci on wheat chromosome group 4. Genetics 168:651–663.  https://doi.org/10.1534/genetics.104.034827 CrossRefGoogle Scholar
  37. Pimentel H, Bray NL, Puente S, Melsted P, Pachter L (2017) Differential analysis of RNA-seq incorporating quantification uncertainty. Nat Methods 14:687–690.  https://doi.org/10.1038/nmeth.4324 CrossRefGoogle Scholar
  38. R TC (2018) R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna. https://www.R-project.org
  39. Ramirez-Gonzalez RH, Borrill P, Lang D, Harrington SA, Brinton J, Venturini L, Davey M, Jacobs J, van Ex F, Pasha A, Khedikar Y, Robinson SJ, Cory AT, Florio T, Concia L, Juery C, Schoonbeek H, Steuernagel B, Xiang D, Ridout CJ, Chalhoub B, Mayer KFX, Benhamed M, Latrasse D, Bendahmane A, Wulff BBH, Appels R, Tiwari V, Datla R, Choulet F, Pozniak CJ, Provart NJ, Sharpe AG, Paux E, Spannagl M, Brautigam A, Uauy C, Sequencing IWG (2018) The transcriptional landscape of polyploid wheat. Science 361:662.  https://doi.org/10.1126/science.aar6089 CrossRefGoogle Scholar
  40. Roder MS, Huang XQ, Borner A (2008) Fine mapping of the region on wheat chromosome 7D controlling grain weight. Funct Integr Genom 8:79–86.  https://doi.org/10.1007/s10142-007-0053-8 CrossRefGoogle Scholar
  41. Sajjad M, Ma X, Habibullah Khan S, Shoaib M, Song Y, Yang W, Zhang A, Liu D (2017) TaFlo2-A1, an ortholog of rice Flo2, is associated with thousand grain weight in bread wheat (Triticum aestivum L.). BMC Plant Biol 17:164.  https://doi.org/10.1186/s12870-017-1114-3 CrossRefGoogle Scholar
  42. Sakuma S, Golan G, Guo Z, Ogawa T, Tagiri A, Sugimoto K, Bernhardt N, Brassac J, Mascher M, Hensel G, Ohnishi S, Jinno H, Yamashita Y, Ayalon I, Peleg Z, Schnurbusch T, Komatsuda T (2019) Unleashing floret fertility in wheat through the mutation of a homeobox gene. Proc Natl Acad Sci U S A 116(11):5182–5187.  https://doi.org/10.1073/pnas.1815465116 CrossRefGoogle Scholar
  43. Shi L, Wu Y, Sheen J (2018) TOR signaling in plants: conservation and innovation. Development 145:dev160887.  https://doi.org/10.1242/dev.160887 CrossRefGoogle Scholar
  44. Silva Lda C, Wang S, Zeng ZB (2012) Composite interval mapping and multiple interval mapping: procedures and guidelines for using Windows QTL Cartographer. Methods Mol Biol 871:75–119.  https://doi.org/10.1007/978-1-61779-785-9_6 CrossRefGoogle Scholar
  45. Stam P (1993) Construction of integrated genetic-linkage maps by means of a new computer package: joinmap. Plant J 3:739e–744e.  https://doi.org/10.1111/j.1365-313X.1993.00739.x CrossRefGoogle Scholar
  46. Su ZQ, Hao CY, Wang LF, Dong YC, Zhang XY (2011) Identification and development of a functional marker of TaGW2 associated with grain weight in bread wheat (Triticum aestivum L.). Theor Appl Genet 122:211–223.  https://doi.org/10.1007/s00122-010-1437-z CrossRefGoogle Scholar
  47. Uauy C (2017) Wheat genomics comes of age. Curr Opin Plant Biol 36:142–148.  https://doi.org/10.1016/j.pbi.2017.01.007 CrossRefGoogle Scholar
  48. Uauy C, Wulff BBH, Dubcovsky J (2017) Combining traditional mutagenesis with new high-throughput sequencing and genome editing to reveal hidden variation in polyploid wheat. Annu Rev Genet 51:435–454.  https://doi.org/10.1146/annurev-genet-120116-024533 CrossRefGoogle Scholar
  49. Wang Z, Gerstein M, Snyder M (2009) RNA-Seq: a revolutionary tool for transcriptomics. Nat Rev Genet 10:57–63.  https://doi.org/10.1038/nrg2484 CrossRefGoogle Scholar
  50. Wang S, Wu K, Yuan Q, Liu X, Liu Z, Lin X, Zeng R, Zhu H, Dong G, Qian Q, Zhang G, Fu X (2012) Control of grain size, shape and quality by OsSPL16 in rice. Nat Genet 44:950–954.  https://doi.org/10.1038/ng.2327 CrossRefGoogle Scholar
  51. Wang S, Yan X, Wang Y, Liu H, Cui D, Chen F (2016) Haplotypes of the TaGS5-A1 gene are associated with thousand-kernel weight in Chinese Bread wheat. Front Plant Sci 7:783.  https://doi.org/10.3389/fpls.2016.00783 Google Scholar
  52. Wang M, Wang S, Liang Z, Shi W, Gao C, Xia G (2017) From genetic stock to genome editing: gene exploitation in wheat. Trends Biotechnol 36(2):160–172.  https://doi.org/10.1016/j.tibtech.2017.10.002 CrossRefGoogle Scholar
  53. Xiong Y, Sheen J (2015) Novel links in the plant TOR kinase signaling network. Curr Opin Plant Biol 28:83–91.  https://doi.org/10.1016/j.pbi.2015.09.006 CrossRefGoogle Scholar
  54. Yue A, Li A, Mao X, Chang X, Li R, Jing R (2015) Identification and development of a functional marker from 6-SFT-A2 associated with grain weight in wheat. Mol Breed 35:63.  https://doi.org/10.1007/s11032-015-0266-9 CrossRefGoogle Scholar
  55. Zanke CD, Ling J, Plieske J, Kollers S, Ebmeyer E, Korzun V, Argillier O, Stiewe G, Hinze M, Neumann F, Eichhorn A, Polley A, Jaenecke C, Ganal MW, Roder MS (2015) Analysis of main effect QTL for thousand grain weight in European winter wheat (Triticum aestivum L.) by genome-wide association mapping. Front Plant Sci 6:644.  https://doi.org/10.3389/fpls.2015.00644 CrossRefGoogle Scholar
  56. Zhai H, Feng Z, Du X, Song Y, Liu X, Qi Z, Song L, Li J, Li L, Peng H, Hu Z, Yao Y, Xin M, Xiao S, Sun Q, Ni Z (2018) A novel allele of TaGW2-A1 is located in a finely mapped QTL that increases grain weight but decreases grain number in wheat (Triticum aestivum L.). Theor Appl Genet 131:539–553.  https://doi.org/10.1007/s00122-017-3017-y CrossRefGoogle Scholar
  57. Zhang LY, Liu DC, Guo XL, Yang WL, Sun JZ, Wang DW, Zhang A (2010) Genomic distribution of quantitative trait loci for yield and yield-related traits in common wheat. J Integr Plant Biol 52:996–1007.  https://doi.org/10.1111/j.1744-7909.2010.00967.x CrossRefGoogle Scholar
  58. Zhang L, Zhao YL, Gao LF, Zhao GY, Zhou RH, Zhang BS, Jia JZ (2012) TaCKX6-D1, the ortholog of rice OsCKX2, is associated with grain weight in hexaploid wheat. New Phytol 195:574–584.  https://doi.org/10.1111/j.1469-8137.2012.04194.x CrossRefGoogle Scholar
  59. Zhang YJ, Liu JD, Xia XC, He ZH (2014) TaGS-D1, an ortholog of rice OsGS3, is associated with grain weight and grain length in common wheat. Mol Breed 34:1097–1107.  https://doi.org/10.1007/s11032-014-0102-7 CrossRefGoogle Scholar
  60. Zhang ZG, Lv GD, Li B, Wang JJ, Zhao Y, Kong FM, Guo Y, Li SS (2017) Isolation and characterization of the TaSnRK2.10 gene and its association with agronomic traits in wheat (Triticum aestivum L.). PLoS One 12:0174425.  https://doi.org/10.1371/journal.pone.0174425 Google Scholar
  61. Zhao G, Zou C, Li K, Wang K, Li T, Gao L, Zhang X, Wang H, Yang Z, Liu X, Jiang W, Mao L, Kong X, Jiao Y, Jia J (2017) The Aegilops tauschii genome reveals multiple impacts of transposons. Nat Plants 3:946–955.  https://doi.org/10.1038/s41477-017-0067-8 CrossRefGoogle Scholar
  62. Zimin AV, Puiu D, Hall R, Kingan S, Clavijo BJ, Salzberg SL (2017) The first near-complete assembly of the hexaploid bread wheat genome, Triticum aestivum. Gigascience 6:1–7.  https://doi.org/10.1093/gigascience/gix097 Google Scholar
  63. Zuo J, Li J (2014) Molecular genetic dissection of quantitative trait loci regulating rice grain size. Annu Rev Genet 48:99–118.  https://doi.org/10.1146/annurev-genet-120213-092138 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Panfeng Guan
    • 1
    • 2
  • Na Di
    • 2
  • Qing Mu
    • 1
  • Xueyi Shen
    • 1
  • Yongfa Wang
    • 1
  • Xiaobo Wang
    • 1
  • Kuohai Yu
    • 1
  • Wanjun Song
    • 1
  • Yongming Chen
    • 1
  • Mingming Xin
    • 1
  • Zhaorong Hu
    • 1
  • Weilong Guo
    • 1
  • Yingyin Yao
    • 1
  • Zhongfu Ni
    • 1
  • Qixin Sun
    • 1
  • Huiru Peng
    • 1
    Email author
  1. 1.State Key Laboratory for Agrobiotechnology/Key Laboratory of Crop Heterosis and Utilization, Ministry of Education/Beijing Key Laboratory of Crop Genetic Improvement/College of Agronomy and BiotechnologyChina Agricultural UniversityBeijingChina
  2. 2.College of Biological SciencesChina Agricultural UniversityBeijingChina

Personalised recommendations