Fine mapping and molecular characterization of the virescent gene vsp in Upland cotton (Gossypium hirsutum)

  • Guangzhi Mao
  • Hengling Wei
  • Wei Hu
  • Qiang Ma
  • Meng Zhang
  • Hantao WangEmail author
  • Shuxun YuEmail author
Original Article


Key message

The vsp gene was fine mapped to a 353.7-kb region, and a 201-bp deletion that affected chloroplast development and chlorophyll biosynthesis was found in the candidate gene GhPUR4.


Virescent mutations can be used as marker traits in heterosis breeding and can also be used to research chloroplast development, chlorophyll biosynthesis and photosynthesis mechanisms. Here, we obtained a light-sensitive virescent mutant, vsp, that has reduced chlorophyll (Chl) content and abnormal chloroplast development. Then, the virescent space (vsp) gene in the vsp mutant was preliminarily mapped to a 38.32-Mb region of chromosome D04 using a high-density SNP genetic map with a total length of 5384.33 cM and 4472 bin markers. Furthermore, the vsp gene was narrowed down to a 353.7-kb region that contains 15 candidate genes using 484 virescent individuals from an F2 population. Sequence analysis of genes in this region showed that a 201-bp deletion was present in the Gh_D04G1108 (GhPUR4) gene in the vsp mutant. The 201-bp deletion of Gh_D04G1108 caused the deletion of 67 AAs in the GhPUR4 protein. Virus-induced gene silencing (VIGS) of GhPUR4 in normal plants caused reduced GhPUR4 gene expression levels, reduced Chl content, abnormal chloroplast development and virescent true leaves. This study could help us unravel the function of GhPUR4 in chloroplast development and Chl biosynthesis at the early developmental stages of the true leaves in cotton, which could promote the research and application of virescent mutations in cotton heterosis breeding.



This research was funded by the National Key Research and Development Programme of China (Grant number 2016YFD0101400).

Compliance with ethical standards

Conflict of interest

The authors declare no competing financial interests.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Supplementary material

122_2019_3338_MOESM1_ESM.tif (3.2 mb)
Supplementary material 1 (TIFF 3249 kb)
122_2019_3338_MOESM2_ESM.tif (4.8 mb)
Supplementary material 2 (TIFF 4895 kb)
122_2019_3338_MOESM3_ESM.tif (1.5 mb)
Supplementary material 3 (TIFF 1516 kb)
122_2019_3338_MOESM4_ESM.tif (163 kb)
Supplementary material 4 (TIFF 163 kb)
122_2019_3338_MOESM5_ESM.docx (19 kb)
Supplementary material 5 (DOCX 19 kb)
122_2019_3338_MOESM6_ESM.docx (29 kb)
Supplementary material 6 (DOCX 28 kb)
122_2019_3338_MOESM7_ESM.docx (24 kb)
Supplementary material 7 (DOCX 23 kb)
122_2019_3338_MOESM8_ESM.docx (28 kb)
Supplementary material 8 (DOCX 28 kb)
122_2019_3338_MOESM9_ESM.docx (27 kb)
Supplementary material 9 (DOCX 26 kb)
122_2019_3338_MOESM10_ESM.docx (19 kb)
Supplementary material 10 (DOCX 18 kb)
122_2019_3338_MOESM11_ESM.docx (17 kb)
Supplementary material 11 (DOCX 16 kb)


  1. Anand R, Hoskins AA, Stubbe J, Ealick SE (2004) Domain organization of Salmonella typhimurium formylglycinamide ribonucleotide amidotransferase revealed by X-ray crystallography. Biochemistry 43:10328–10342CrossRefGoogle Scholar
  2. Archer EK, Ting BL (1996) A virescent plastid mutation in tobacco decreases peroxisome enzyme activities in seedlings. J Plant Physiol 149:520–526CrossRefGoogle Scholar
  3. Atkins CA, Storer PJ, Smith P (1997) Reexamination of the intracellular localization of de novo purine synthesis in cowpea nodules. Plant Physiol 113:127–135CrossRefGoogle Scholar
  4. Berthomé R, Thomasset M, Maene M, Bourgeois N, Froger N, Budar F (2008) pur4 mutations are lethal to the male, but not the female, gametophyte and affect sporophyte development in Arabidopsis. Plant Physiol 147:650–660CrossRefGoogle Scholar
  5. Boland MJ, Schubert KR (1983) Biosynthesis of purines by a proplastid fraction from soybean nodules. Arch Biochem Biophys 220:179–187CrossRefGoogle Scholar
  6. Campbell BW, Mani D, Curtin SJ, Slattery RA, Michno JM, Ort DR, Schaus PJ, Palmer RG, Orf JH, Stupar RM (2015) Identical substitutions in magnesium chelatase paralogs result in chlorophyll-deficient soybean mutants. Genes Genom Genet 5:123–131Google Scholar
  7. Chen W, Yao J, Chu L, Yuan Z, Li Y, Zhang Y (2015) Genetic mapping of the nulliplex-branch gene (gb_nb1) in cotton using next-generation sequencing. Theor Appl Genet 128:539–547CrossRefGoogle Scholar
  8. Chen G, Wang Y, Xiong Y, Liu F, Xu Q, Yi G, Ding X, Tang W (2018) Gene mapping and breeding application of rice leaf color mutant xws. Mol Plant Breed 16:155–162Google Scholar
  9. Dong W, Wu D, Li G, Wu D, Wang Z (2018) Next-generation sequencing from bulked segregant analysis identifies a dwarfism gene in watermelon. Sci Rep 8:2908CrossRefGoogle Scholar
  10. Feng H, Liu Z, Liu J (2012) Mapping of, a gene conferring orange color on the inner leaf of the Chinese cabbage (Brassica rapa L. ssp. pekinensis). Mol Breed 29:235–244CrossRefGoogle Scholar
  11. Gao X, Britt JR, Shan L, He P (2011a) Agrobacterium-mediated virus-induced gene silencing assay in cotton. J Vis Exp 54:e2938. Google Scholar
  12. Gao X, Wheeler T, Li Z, Kenerley CM, He P, Shan L (2011b) Silencing GhNDR1 and GhMKK2 compromised cotton resistance to Verticillium wilt. Plant J 66:293–305CrossRefGoogle Scholar
  13. Gao M, Hu L, Li Y, Weng Y (2016) The chlorophyll-deficient golden leaf mutation in cucumber is due to a single nucleotide substitution in CsChlI for magnesium chelatase I subunit. Theor Appl Genet 129:1–13CrossRefGoogle Scholar
  14. Ge XY, Wu J, Zhang CJ, Wang QH, Hou YX, Yang ZR, Yang ZE, Xu ZZ, Wang Y, Lu LL, Zhang XY, Hua JP, Li FG (2016) Prediction of VIGS efficiency by the Sfold program and its reliability analysis in Gossypium hirsutum. Sci Bull 61(7):543–551CrossRefGoogle Scholar
  15. Gilmore EC, Tuleen NA (1973) Inheritance of a spontaneous virescent mutant in common wheat (Triticum aestivum L.). Genome 15:681–684Google Scholar
  16. Hung WF, Chen LJ, Boldt R, Sun CW, Li HM (2004) Characterization of Arabidopsis glutamine phosphoribosyl pyrophosphate amidotransferase-deficient mutants. Plant Physiol 135:1314–1323CrossRefGoogle Scholar
  17. Jia X, Pang C, Wei H, Wang H, Ma Q, Yang J, Cheng S, Su J, Fan S, Song M, Wusiman N, Yu S (2016) High-density linkage map construction and QTL analysis for earliness-related traits in Gossypium hirsutum L. BMC Genom 17:909CrossRefGoogle Scholar
  18. Kosambi DD (1943) The estimation of map distance from recombination values. Ann Eugen 12:172–175CrossRefGoogle Scholar
  19. Li F, Fan G, Wang K, Sun F, Yuan Y, Song G, Li Q, Ma Z, Lu C, Zou C, Chen W, Liang X, Shang H, Liu W, Shi C, Xiao G, Gou C, Ye W, Xu X, Zhang X, Wei H, Li Z, Zhang G, Wang J, Liu K, Kohel RJ, Percy RG, Yu JZ, Zhu YX, Wang J, Yu S (2014) Genome sequence of the cultivated cotton Gossypium arboreum. Nat Genet 46:567–572CrossRefGoogle Scholar
  20. Li F, Fan G, Lu C, Xiao G, Zou C, Kohel RJ, Ma Z, Shang H, Ma X, Wu J, Liang X, Huang G, Percy RG, Liu K, Yang W, Chen W, Du X, Shi C, Yuan Y, Ye W, Liu X, Zhang X, Liu W, Wei H, Wei S, Huang G, Zhang X, Zhu S, Zhang H, Sun F, Wang X, Liang J, Wang J, He Q, Huang L, Wang J, Cui J, Song G, Wang K, Xu X, Yu JZ, Zhu Y, Yu S (2015) Genome sequence of cultivated Upland cotton (Gossypium hirsutum TM-1) provides insights into genome evolution. Nat Biotechnol 33:524–530CrossRefGoogle Scholar
  21. Li L, Zhao S, Su J, Fan S, Pang C, Wei H, Wang H, Gu L, Zhang C, Liu G, Yu D, Liu Q, Zhang X, Yu S (2017) High-density genetic linkage map construction by F2 populations and QTL analysis of early-maturity traits in Upland cotton (Gossypium hirsutum L.). PLoS ONE 12:e0182918CrossRefGoogle Scholar
  22. Liu X, Zhao B, Zheng HJ, Hu Y, Lu G, Yang CQ, Chen JD, Chen JJ, Chen DY, Zhang L, Zhou Y, Wang LJ, Guo WZ, Bai YL, Ruan JX, Shangguan XX, Mao YB, Shan CM, Jiang JP, Zhu YQ, Jin L, Kang H, Chen ST, He XL, Wang R, Wang YZ, Chen J, Wang LJ, Yu ST, Wang BY, Wei J, Song SC, Lu XY, Gao ZC, Gu WY, Deng X, Ma D, Wang S, Liang WH, Fang L, Cai CP, Zhu XF, Zhou BL, Jeffrey Chen Z, Xu SH, Zhang YG, Wang SY, Zhang TZ, Zhao GP, Chen XY (2015) Gossypium barbadense genome sequence provides insight into the evolution of extra-long staple fiber and specialized metabolites. Sci Rep 5:14139CrossRefGoogle Scholar
  23. Liu H, Li Q, Yang F, Zhu F, Sun Y, Tao Y, Lo C (2016) Differential regulation of protochlorophyllide oxidoreductase abundances by VIRESCENT 5A (OsV5A) and VIRESCENT 5B (OsV5B) in rice seedlings. Plant Cell Physiol 57:2392–2402CrossRefGoogle Scholar
  24. Lyttle TW (1991) Segregation distorters. Annu Rev Genet 25:511–557CrossRefGoogle Scholar
  25. Mao G, Ma Q, Wei H, Su J, Wang H, Ma Q, Fan S, Song M, Zhang X, Yu S (2018) Fine mapping and candidate gene analysis of the virescent gene v 1 in Upland cotton (Gossypium hirsutum). Mol Genet Genom 293:249–264CrossRefGoogle Scholar
  26. Michelmore RW, Paran I, Kesseli RV (1991) Identitication of markers linked to disease resistance genes by bulk segregant analysis: a rapid method to detect markers in specific genomic regions using segregating populations. P Natl Acad USA 88:9828–9832CrossRefGoogle Scholar
  27. Pang J, Zhu Y, Li Q, Liu J, Tian Y, Liu Y, Wu J (2013) Development of agrobacterium-mediated virus-induced gene silencing and performance evaluation of four marker genes in Gossypium barbadense. PLoS ONE 8:e73211CrossRefGoogle Scholar
  28. Paterson AH, Brubaker CL, Wendel JF (1993) A rapid method for extraction of cotton (Gossypium Spp.) genomic DNA suitable for RFLP or PCR analysis. Plant Mol Biol Rep 11:122–127CrossRefGoogle Scholar
  29. Petersen BL, Moller GM, Jensen PE, Henningsen KW (2010) Identification of the Xan-g Gene and Expression of the Mg-chelatase Encoding Genes Xan-f, -g and -h in Mutant and Wild Type Barley (Hordeum Vulgare L.). Hereditas 131:165–170CrossRefGoogle Scholar
  30. Qi H, Wang N, Qiao W, Xu Q, Zhou H, Shi J, Yan J, Huang Q (2017) Construction of a high-density genetic map using genotyping by sequencing (GBS) for quantitative trait loci (QTL) analysis of three plant morphological traits in Upland cotton (Gossypium hirsutum L.). Euphytica 213:83CrossRefGoogle Scholar
  31. Rüdiger W (1997) Chlorophyll metabolism: from outer space down to the molecular level. Phytochemistry 46:1394–1397CrossRefGoogle Scholar
  32. Sang X, Fang L, Vanichpakorn Y, Ling Y, Du P, Zhao F, Yang Z, He G (2010) Physiological character and molecular mapping of leaf-color mutant wyv1 in rice (Oryza sativa L.). Genes Genom 32:123–128CrossRefGoogle Scholar
  33. Senthil-Kumar M, Hema R, Anand A, Kang L, Udayakumar M, Mysore KS (2007) A systematic study to determine the extent of gene silencing in Nicotiana benthamiana and other Solanaceae species when heterologous gene sequences are used for virus-induced gene silencing. New Phytol 176:782–791CrossRefGoogle Scholar
  34. Shelp BJ, Atkins CA, Storer PJ, Canvin DT (1983) Cellular and subcellular organization of pathways of ammonia assimilation and ureide synthesis in nodules of cowpea (Vigna unguiculata L. Walp.). Arch Biochem Biophys 224:429–441CrossRefGoogle Scholar
  35. Smith PMC, Atkins CA (2002) Purine biosynthesis. Big in cell division, even bigger in nitrogen assimilation. Plant Physiol 128:793–802CrossRefGoogle Scholar
  36. Sonah H, Bastien M, Iquira E, Tardivel A, Légaré G, Boyle B, Normandeau É, Laroche J, Larose S, Jean M, Belzile F, Sonah H (2013) An improved genotyping by sequencing (GBS) approach offering increased versatility and efficiency of SNP discovery and genotyping. PLoS ONE 8:e54603CrossRefGoogle Scholar
  37. Song M, Yang Z, Fan S, Zhu H, Pang C, Tian M, Yu S (2011) Physiological and biochemical analysis and identification of a short season cotton virescent mutant. Sci Agric Sin 44:3709–3720Google Scholar
  38. Song M, Fan S, Zhu H, Pang C, Tian M, Yu S (2012) Cytological and genetic analysis of a virescent mutant in Upland cotton (Gossypium hirsutum L.). Euphytica 187:235–245CrossRefGoogle Scholar
  39. Sugiura M, Takeda Y (2000) Nucleic acids. In: Buchanan BB, Gruissem W, Jones R et al (eds) Biochemistry and molecular biology of plants. American Society of Plant Biologists, Rockville, MDGoogle Scholar
  40. Sun J, Zheng T, Yu J, Wu T, Wang X, Chen G, Tian Y, Zhang H, Wang Y, Terzaghi W, Wang C, Wan J (2017) TSV, a putative plastidic oxidoreductase, protects rice chloroplasts from cold stress during development by interacting with plastidic thioredoxin Z. New Phytol 215:240–255CrossRefGoogle Scholar
  41. Tang Z, Yu S (1998) Plant physiology and molecular biology. Science Press, BeijingGoogle Scholar
  42. Thyssen GN, Fang DD, Turley RB, Florane C, Li P, Naoumkina M (2014) Next generation genetic mapping of the Ligon-lintless-2 (Li2) locus in Upland cotton (Gossypium hirsutum L.). Theor Appl Genet 127:2183–2192CrossRefGoogle Scholar
  43. Van Ooijen JW (2006) JoinMap 4 Software for the calculation of genetic linkage maps in experimental populations. Wageningen, The Netherland, p 56Google Scholar
  44. Wang K, Wang Z, Li F, Ye W, Wang J, Song G, Yue Z, Cong L, Shang H, Zhu S, Zou C, Li Q, Yuan Y, Lu C, Wei H, Gou C, Zheng Z, Yin Y, Zhang X, Liu K, Wang B, Song C, Shi N, Kohel RJ, Percy RG, Yu JZ, Zhu YX, Wang J, Yu S (2012) The draft genome of a diploid cotton Gossypium raimondii. Nat Genet 44:1098–1103CrossRefGoogle Scholar
  45. Wang Q, Fang L, Chen J, Hu Y, Si Z, Wang S, Chang L, Guo W, Zhang T (2015a) Genome-wide mining, characterization, and development of microsatellite markers in Gossypium species. Sci Rep 5:10638CrossRefGoogle Scholar
  46. Wang S, Chen J, Zhang W, Hu Y, Chang L, Fang L, Wang Q, Lv F, Wu H, Si Z, Cai C, Zhu X, Zhou B, Guo W, Zhang T (2015b) Sequence-based ultra-dense genetic and physical maps reveal structural variations of allopolyploid cotton genomes. Genome Biol 16:108CrossRefGoogle Scholar
  47. Wang N, Liu Z, Zhang Y, Li C, Feng H (2018) Identification and fine mapping of a stay-green gene (Brnye1) in pakchoi (Brassica campestris L. ssp. chinensis). Theor Appl Genet 131:1–12CrossRefGoogle Scholar
  48. Xing A, Williams ME, Bourett TM, Hu W, Hou Z, Meeley RB, Jaqueth J, Dam T, Li B (2014) A pair of homoeolog ClpP5 genes underlies a virescent yellow-like mutant and its modifier in maize. Plant J 79:192–205CrossRefGoogle Scholar
  49. You FM, Huo N, Gu YQ, Luo M, Ma Y, Hane D, Lazo GR, Dvorak J, Anderson OD (2008) BatchPrimer3: a high throughput web application for PCR and sequencing primer design. BMC Bioinf 9:1–13CrossRefGoogle Scholar
  50. Yuan D, Tang Z, Wang M, Gao W, Tu L, Jin X, Chen L, He Y, Zhang L, Zhu L, Li Y, Liang Q, Lin Z, Yang X, Liu N, Jin S, Lei Y, Ding Y, Li G, Ruan X, Ruan Y, Zhang X (2015) The genome sequence of Sea-Island cotton (Gossypium barbadense) provides insights into the allopolyploidization and development of superior spinnable fibres. Sci Rep 5:17662CrossRefGoogle Scholar
  51. Zhang T, Hu Y, Jiang W, Fang L, Guan X, Chen J, Zhang J, Saski CA, Scheffler BE, Stelly DM, Hulse-Kemp AM, Wan Q, Liu B, Liu C, Wang S, Pan M, Wang Y, Wang D, Ye W, Chang L, Zhang W, Song Q, Kirkbride RC, Chen X, Dennis E, Llewellyn DJ, Peterson DG, Thaxton P, Jones DC, Wang Q, Xu X, Zhang H, Wu H, Zhou L, Mei G, Chen S, Tian Y, Xiang D, Li X, Ding J, Zuo Q, Tao L, Liu Y, Li J, Lin Y, Hui Y, Cao Z, Cai C, Zhu X, Jiang Z, Zhou B, Guo W, Li R, Chen ZJ (2015) Sequencing of allotetraploid cotton (Gossypium hirsutum L. acc. TM-1) provides a resource for fiber improvement. Nat Biotechnol 33:531–537CrossRefGoogle Scholar
  52. Zhang Z, Shang H, Shi Y, Huang L, Li J, Ge Q, Gong J, Liu A, Chen T, Wang D, Wang Y, Palanga KK, Muhammad J, Li W, Lu Q, Deng X, Tan Y, Song W, Cai J, Li P, Rashid H, Gong W, Yuan Y (2016) Construction of a high-density genetic map by specific locus amplified fragment sequencing (SLAF-seq) and its application to quantitative trait loci (QTL) analysis for boll weight in Upland cotton (Gossypium hirsutum). BMC Plant Biol 16:79CrossRefGoogle Scholar
  53. Zhang T, Feng P, Li Y, Yu P, Yu G, Sang X, Ling Y, Zeng X, Li Y, Huang J, Zhang T, Zhao F, Wang N, Zhang C, Yang Z, Wu R, He G (2018) VIRESCENT-ALBINO LEAF 1 regulates leaf colour development and cell division in rice. J Exp Bot 69:4791–4804CrossRefGoogle Scholar
  54. Zhao Y, Wang ML, Zhang YZ, Du LF, Pan T (2010) A chlorophyll-reduced seedling mutant in oilseed rape, Brassica napus, for utilization in F 1 hybrid production. Plant Breed 119:131–135CrossRefGoogle Scholar
  55. Zhou C, Han L, Pislariu C, Nakashima J, Fu C, Jiang Q, Quan L, Blancaflor EB, Tang Y, Bouton JH, Udvardi M, Xia G, Wang ZY (2011) From model to crop: functional analysis of a STAY-GREEN gene in the model legume Medicago truncatula and effective use of the gene for alfalfa improvement. Plant Physiol 157:1483–1496CrossRefGoogle Scholar
  56. Zhu L, Zeng G, Chen Y, Yang Z, Qi L, Pu Y, Yi B, Wen J, Ma C, Shen J, Tu J, Fu T (2014) Genetic characterisation and fine mapping of a chlorophyll-deficient mutant (BnaC.ygl) in Brassica napus. Mol Breed 34:603–614CrossRefGoogle Scholar
  57. Zhu JK, Chen JD, Gao FK, Xu CY, Wu HT, Chen K, Si ZF, Yan H, Zhang T (2017) Rapid mapping and cloning of the virescent-1 gene in cotton by bulked segregant analysis–next generation sequencing and virus-induced gene silencing strategies. J Exp Bot 68:4125–4135CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.State Key Laboratory of Cotton Biology, Institute of Cotton ResearchChinese Academy of Agricultural SciencesAnyangChina
  2. 2.College of Life SciencesXinyang Normal UniversityXinyangChina

Personalised recommendations