Advertisement

Testcross performance of doubled haploid lines from European flint maize landraces is promising for broadening the genetic base of elite germplasm

  • Pedro C. Brauner
  • Wolfgang Schipprack
  • H. Friedrich Utz
  • Eva Bauer
  • Manfred Mayer
  • Chris-Carolin Schön
  • Albrecht E. MelchingerEmail author
Original Article
  • 32 Downloads

Abstract

Key message

Selected doubled haploid lines averaged similar testcross performance as their original landraces, and the best of them approached the yields of elite inbreds, demonstrating their potential to broaden the narrow genetic diversity of the flint germplasm pool.

Abstract

Maize landraces represent a rich source of genetic diversity that remains largely idle because the high genetic load and performance gap to elite germplasm hamper their use in modern breeding programs. Production of doubled haploid (DH) lines can mitigate problems associated with the use of landraces in pre-breeding. Our objective was to assess in comparison with modern materials the testcross performance (TP) of the best 89 out of 389 DH lines developed from six landraces and evaluated in previous studies for line per se performance (LP). TP with a dent tester was evaluated for the six original landraces, ~ 15 DH lines from each landrace selected for LP, and six elite flint inbreds together with nine commercial hybrids for grain and silage traits. Mean TP of the DH lines rarely differed significantly from TP of their corresponding landrace, which averaged in comparison with the mean TP of the elite flint inbreds ~ 20% lower grain yield and ~ 10% lower dry matter and methane yield. Trait correlations of DH lines closely agreed with the literature; correlation of TP with LP was zero for grain yield, underpinning the need to evaluate TP in addition to LP. For all traits, we observed substantial variation for TP among the DH lines and the best showed similar TP yields as the elite inbreds. Our results demonstrate the high potential of landraces for broadening the narrow genetic base of the flint heterotic pool and the usefulness of the DH technology for exploiting idle genetic resources from gene banks.

Notes

Acknowledgements

We thank Willem Molenaar for valuable suggestions to improve the manuscript. We would also like to thank the technical staff from the University of Hohenheim for excellence in conducting the field experiments. We are indebted to KWS SAAT SE for the additional field experiment in Einbeck and Thomas Presterl and Theresa Bolduan for conducting it. This research was funded by the German Federal Ministry of Education and Research (BMBF) within the scope of the funding initiative MAZE “Plant Breeding Research for the Bioeconomy” (Funding ID: 031B0195).

Compliance with ethical standards

Conflict of interest

All authors declare that they have no conflict of interest.

Ethical standards

The experiments reported in this study comply with the current laws of Germany.

Supplementary material

122_2019_3325_MOESM1_ESM.docx (161 kb)
Supplementary material 1 (DOCX 160 kb)

References

  1. Albrecht T (2014) Genome-based prediction of testcross performance in maize (Zea mays L.). Dissertation Technical University of Munich, Munich. https://mediatum.ub.tum.de/doc/1227384/1227384.pdf
  2. Andjelkovic V, Ignjatovic-Micic D (2012) Maize genetic resources—science and benefits. Serbian Genetic Society, Belgrade. https://www.researchgate.net/publication/304056743_Maize_Genetic_Resources-Science_and_Benefits-
  3. Barrière Y, Alber D, Dolstra O et al (2006) Past and prospects of forage maize breeding in Europe. II. History, germplasm evolution and correlative agronomic changes. Maydica 51:435–449Google Scholar
  4. Böhm J, Schipprack W, Mirdita V et al (2014) Breeding potential of European flint maize landraces evaluated by their testcross performance. Crop Sci 54:1665–1672.  https://doi.org/10.2135/cropsci2013.12.0837 CrossRefGoogle Scholar
  5. Böhm J, Schipprack W, Utz HF, Melchinger AE (2017) Tapping the genetic diversity of landraces in allogamous crops with doubled haploid lines: a case study from European flint maize. Theor Appl Genet 130:861–873.  https://doi.org/10.1007/s00122-017-2856-x CrossRefPubMedGoogle Scholar
  6. Brauner PC, Müller D, Schopp P et al (2018) Genomic prediction within and among doubled-haploid libraries from maize landraces. Genetics 210:1185–1196.  https://doi.org/10.1534/genetics.118.301286 CrossRefPubMedGoogle Scholar
  7. Browning SR, Browning BL (2007) Rapid and accurate haplotype phasing and missing-data inference for whole-genome association studies by use of localized haplotype clustering. Am J Hum Genet 81:1084–1097.  https://doi.org/10.1086/521987 CrossRefPubMedPubMedCentralGoogle Scholar
  8. Cochran WG, Cox GM (1957) Experimental designs, 2nd edn. Wiley, LondonGoogle Scholar
  9. Dubreuil P, Charcosset A (1998) Genetic diversity within and among maize populations: a comparison between isozyme and nuclear RFLP loci. Theor Appl Genet 96:577–587.  https://doi.org/10.1007/s001220050776 CrossRefGoogle Scholar
  10. Fischer S, Melchinger AE, Korzun V et al (2010) Molecular marker assisted broadening of the Central European heterotic groups in rye with Eastern European germplasm. Theor Appl Genet 120:291–299.  https://doi.org/10.1007/s00122-009-1124-0 CrossRefPubMedGoogle Scholar
  11. Ganal MW, Durstewitz G, Polley A, Bérard A, Buckler ES et al (2011) A large maize (Zea mays L.) SNP genotyping array: development and germplasm genotyping, and genetic mapping to compare with the B73 reference genome. PLoS ONE 6:e28334CrossRefPubMedPubMedCentralGoogle Scholar
  12. Geiger HH, Melchinger AE, Schmidt GA (1986) Analysis of factorial crosses between flint and dent maize inbred lines for forage performance and quality traits. In: Proceeding of the 13th congress of the maize and sorghum section of EUCARPIA. Pudoc Press, Wageningen, pp 147–154Google Scholar
  13. Geiger HH, Gordillo GA, Koch S (2013) Genetic correlations among haploids, doubled haploids, and testcrosses in maize. Crop Sci 53:2313–2320.  https://doi.org/10.2135/cropsci2013.03.0163 CrossRefGoogle Scholar
  14. Gorjanc G, Jenko J, Hearne SJ, Hickey JM (2016) Initiating maize pre-breeding programs using genomic selection to harness polygenic variation from landrace populations. BMC Genom 17:1–15.  https://doi.org/10.1186/s12864-015-2345-z CrossRefGoogle Scholar
  15. Gouesnard B, Negro S, Laffray A et al (2017) Genotyping-by-sequencing highlights original diversity patterns within a European collection of 1191 maize flint lines, as compared to the maize USDA genebank. Theor Appl Genet 130:2165–2189.  https://doi.org/10.1007/s00122-017-2949-6 CrossRefPubMedGoogle Scholar
  16. Grieder C, Mittweg G, Dhillon BS et al (2011) Determination of methane fermentation yield and its kinetics by near infrared spectroscopy and chemical composition in maize. J Near Infrared Spec 19:463–477.  https://doi.org/10.1255/jnirs.959 CrossRefGoogle Scholar
  17. Grieder C, Dhillon BS, Schipprack W, Melchinger AE (2012) Breeding maize as biogas substrate in Central Europe: II. Quantitative-genetic parameters for inbred lines and correlations with testcross performance. Theor Appl Genet 124:981–988.  https://doi.org/10.1007/s00122-011-1762-x CrossRefPubMedGoogle Scholar
  18. Hallauer AR, Carena MJ, Miranda Filho JB (2010) Quantitative genetics in maize breeding, 3rd edn. Springer, New YorkGoogle Scholar
  19. Han S, Miedaner T, Utz HF et al (2018) Genomic prediction and GWAS of Gibberella ear rot resistance traits in dent and flint lines of a public maize breeding program. Euphytica 214:6.  https://doi.org/10.1007/s10681-017-2090-2 CrossRefGoogle Scholar
  20. Hölker A, Schipprack W, Molenaar W, Melchinger AE (2019) Progress for testcross performance within the flint heterotic pool of a public maize breeding program since the onset of hybrid breeding. Euphytica 215:50.  https://doi.org/10.1007/s10681-019-2370-0 CrossRefGoogle Scholar
  21. Holm S (1979) A simple sequentially rejective multiple test procedure. Scand J Stat 6:65–70Google Scholar
  22. Janick J, Caneva G (2005) The first images of maize in Europe. Maydica 50:71–80Google Scholar
  23. Kurtz B, Gardner CAC, Millard MJ, Nickson T, Smith JSC (2016) Global access to maize germplasm provided by the US national plant germplasm system and by us plant breeders. Crop Sci Crop Sci 56:931–941.  https://doi.org/10.2135/cropsci2015.07.0439 CrossRefGoogle Scholar
  24. Laidig F, Piepho H-P, Drobek T, Meyer U (2014) Genetic and non-genetic long-term trends of 12 different crops in German official variety performance trials and on-farm yield trends. Theor Appl Genet 127:2599–2617.  https://doi.org/10.1007/s00122-014-2402-z CrossRefPubMedPubMedCentralGoogle Scholar
  25. Larièpe A, Moreau L, Laborde J et al (2017) General and specific combining abilities in a maize (Zea mays L.) test-cross hybrid panel: relative importance of population structure and genetic divergence between parents. Theor Appl Genet 130:403–417.  https://doi.org/10.1007/s00122-016-2822-z CrossRefPubMedGoogle Scholar
  26. Lübberstedt T, Melchinger AE, Klein D et al (1997) QTL mapping in testcrosses of European flint lines of maize: II. Comparison of different testers for forage quality traits. Crop Sci 37:1913.  https://doi.org/10.2135/cropsci1997.0011183x003700060041x CrossRefGoogle Scholar
  27. Martin M, Schipprack W, Miedaner T et al (2012) Variation and covariation for Gibberella ear rot resistance and agronomic traits in testcrosses of doubled haploid maize lines. Euphytica 185:441–451.  https://doi.org/10.1007/s10681-012-0623-2 CrossRefGoogle Scholar
  28. Mayer M, Unterseer S, Bauer E et al (2017) Is there an optimum level of diversity in utilization of genetic resources? Theor Appl Genet 130:2283–2295.  https://doi.org/10.1007/s00122-017-2959-4 CrossRefPubMedPubMedCentralGoogle Scholar
  29. Melchinger AE (1999) Genetic diversity and heterosis. In: Coors JG, Pandey S (eds) The genetics and exploitation of heterosis in crops. CSSA, Madison, pp 99–118Google Scholar
  30. Melchinger AE, Schmidt W, Geiger HH (1988) Comparison of testcrosses produced from F2 and first backcross populations in maize. Crop Sci 28:743.  https://doi.org/10.2135/cropsci1988.0011183x002800050004x CrossRefGoogle Scholar
  31. Melchinger AE, Schopp P, Müller D et al (2017) Safeguarding our genetic resources with libraries of doubled-haploid lines. Genetics 206:1611–1619.  https://doi.org/10.1534/genetics.115.186205 CrossRefPubMedPubMedCentralGoogle Scholar
  32. Menke KH, Raab L, Salewski A et al (1979) The estimation of the digestibility and metabolizable energy content of ruminant feedingstuffs from the gas production when they are incubated with rumen liquor in vitro. J Agric Sci Camb 93:217–222CrossRefGoogle Scholar
  33. Messmer MM, Melchinger AE, Boppenmaier J et al (1992) Relationships among early European maize inbreds: I. Genetic diversity among flint and dent lines revealed by RFLPs. Crop Sci 32:1301.  https://doi.org/10.2135/cropsci1992.0011183x003200060001x CrossRefGoogle Scholar
  34. Messmer MM, Melchinger AE, Herrmann RG, Boppenmaier J (1993) Relationships among early European maize inbreds: II. Comparison of pedigree and RFLP data. Crop Sci 33:944.  https://doi.org/10.2135/cropsci1993.0011183x003300050014x CrossRefGoogle Scholar
  35. Mihaljevic R, Schön CC, Utz HF, Melchinger AE (2005) Correlations and QTL correspondence between line per Se and testcross performance for agronomic traits in four populations of European maize. Crop Sci 45:114–122.  https://doi.org/10.2135/cropsci2005.0114 CrossRefGoogle Scholar
  36. Mode CJ, Robinson HF (1959) Pleiotropism and the genetic variance and covariance. Biometrics 15:518.  https://doi.org/10.2307/2527650 CrossRefGoogle Scholar
  37. Montes JM, Utz HF, Schipprack W et al (2006) Near-infrared spectroscopy on combine harvesters to measure maize grain dry matter content and quality parameters. Plant Breed 125:591–595.  https://doi.org/10.1111/j.1439-0523.2006.01298.x CrossRefGoogle Scholar
  38. Piepho HP (2004) An algorithm for a letter-based representation of all-pairwise comparisons. J Comput Graph Stat 13:456–466.  https://doi.org/10.1198/1061860043515 CrossRefGoogle Scholar
  39. Pollak LM (2003) The history and success of the public–private project on germplasm enhancement of maize (GEM). Adv Agron 78:45–87CrossRefGoogle Scholar
  40. Prigge V, Babu R, Das B et al (2012) Doubled haploids in tropical maize: II. Quantitative genetic parameters for testcross performance. Euphytica 185:453–463CrossRefGoogle Scholar
  41. Pollmer WG, Phipps RH (1980) Improvement of quality traits of maize for grain and silage use. Martinus Nijhoff, LeidenGoogle Scholar
  42. R Core Team (2017) A language and environment for statistical computing. R Foundation for Statistical Computing, ViennaGoogle Scholar
  43. Rebourg C, Chastanet M, Gouesnard B et al (2003) Maize introduction into Europe: the history reviewed in the light of molecular data. Theor Appl Genet 106:895–903.  https://doi.org/10.1007/s00122-002-1140-9 CrossRefPubMedGoogle Scholar
  44. Reif JC, Melchinger AE, Xia XC et al (2003) Genetic distance based on simple sequence repeats and heterosis in tropical maize populations. Crop Sci 43:1275.  https://doi.org/10.2135/cropsci2003.1275 CrossRefGoogle Scholar
  45. Reif JC, Hamrit S, Heckenberger M et al (2005a) Genetic structure and diversity of European flint maize populations determined with SSR analyses of individuals and bulks. Theor Appl Genet 111:906–913.  https://doi.org/10.1007/s00122-005-0016-1 CrossRefPubMedGoogle Scholar
  46. Reif JC, Melchinger AE, Frisch M (2005b) Genetical and mathematical properties of similarity and dissimilarity coefficients applied in plant breeding and seed bank management. Crop Sci 45:1.  https://doi.org/10.2135/cropsci2005.0001 CrossRefGoogle Scholar
  47. Riedelsheimer C, Technow F, Melchinger AE (2012) Comparison of whole-genome prediction models for traits with contrasting genetic architecture in a diversity panel of maize inbred lines. BMC Genom 13:452.  https://doi.org/10.1186/1471-2164-13-452 CrossRefGoogle Scholar
  48. Salhuana W, Pollak L (2006) Latin American Maize Project (LAMP) and Germplasm Enhancement of Maize (GEM) project: generating useful breeding germplasm. Maydica 51:339–355Google Scholar
  49. Schnell FW (1983) Probleme der Elternwahl—Ein Überblick. In: Arbeitstagung der Arbeitsgemeinschaft der Saatzuchtleiter in Gumpenstein, Austria. 22.–24. Nov. Verlag und Druck der Bundesanstalt für alpenländische Landwirtschaft, Austria, pp 1–11Google Scholar
  50. Schnell FW (1992) Maiszüchtung und die Züchtungsforschung in der Bundesrepublik Deutschland. In: Vorträge Pflanzenzüchtung, pp 27–44Google Scholar
  51. Shull GH (1908) The composition of a field of maize. Am Breeders Assoc Rep 4:296–301Google Scholar
  52. Shull GH (1909) A pure-line method in corn breeding. J Hered 5:51–58CrossRefGoogle Scholar
  53. Smith OS (1986) Covariance between line per se and testcross performance. Crop Sci 26:540.  https://doi.org/10.2135/cropsci1986.0011183X002600030023x CrossRefGoogle Scholar
  54. Snedecor GW, Cochran WG (1989) Statistical methods, 8th edn. Iowa State Univ Press, AmesGoogle Scholar
  55. Späth HR (1973) Vergleich verschiedener Einfachkreuzungen als Komplementärmaterial für ein Hybridzuchtprogramm bei Mais. Dissertation University of Hohenheim, HohenheimGoogle Scholar
  56. Stacklies W, Redestig H, Scholz M et al (2007) pcaMethods a bioconductor package providing PCA methods for incomplete data. Bioinformatics 23:1164–1167.  https://doi.org/10.1093/bioinformatics/btm069 CrossRefPubMedGoogle Scholar
  57. Stadler LJ (1944) Gamete selection in corn breeding. J Am Soc Agron 36:988–989Google Scholar
  58. Stich B, Melchinger AE, Frisch M et al (2005) Linkage disequilibrium in European elite maize germplasm investigated with SSRs. Theor Appl Genet 111:723–730.  https://doi.org/10.1007/s00122-005-2057-x CrossRefPubMedGoogle Scholar
  59. Strigens A, Schipprack W, Reif JC, Melchinger AE (2013) Unlocking the genetic diversity of maize landraces with doubled haploids opens new avenues for breeding. PLoS ONE 8(2):e57234.  https://doi.org/10.1371/journal.pone.0057234 CrossRefPubMedPubMedCentralGoogle Scholar
  60. Tenaillon MI, Charcosset A (2011) A European perspective on maize history. C R Biol 334:221–228.  https://doi.org/10.1016/j.crvi.2010.12.015 CrossRefPubMedGoogle Scholar
  61. Tilley JMA, Terry RA (1963) A two-stage technique for the in vitro digestion of forage crops. Grass Forage Sci 18:104–111.  https://doi.org/10.1111/j.1365-2494.1963.tb00335.x CrossRefGoogle Scholar
  62. Utz HF (2011) A computer program for statistical analysis of plant breeding experiments. Version 3A: Univ. Hohenheim, StuttgartGoogle Scholar
  63. Van Inghelandt D, Melchinger AE, Lebreton C, Stich B (2010) Population structure and genetic diversity in a commercial maize breeding program assessed with SSR and SNP markers. Theor Appl Genet 120:1289–1299.  https://doi.org/10.1007/s00122-009-1256-2 CrossRefPubMedPubMedCentralGoogle Scholar
  64. Wilde K, Burger H, Prigge V et al (2010) Testcross performance of doubled-haploid lines developed from European flint maize landraces. Plant Breed 129:181–185.  https://doi.org/10.1111/j.1439-0523.2009.01677.x CrossRefGoogle Scholar
  65. Yandell BS (1997) Practical data analysis for designed experiments. Chapman & Hall, LondonCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Institute of Plant Breeding, Seed Sciences and Population GeneticsUniversity of HohenheimStuttgartGermany
  2. 2.Plant Breeding, TUM School of Life Sciences WeihenstephanTechnical University of MunichFreisingGermany

Personalised recommendations