Advertisement

Theoretical and Applied Genetics

, Volume 132, Issue 4, pp 1263–1281 | Cite as

Co-localization of genomic regions associated with seed morphology and composition in a desi chickpea (Cicer arietinum L.) population varying in seed protein concentration

  • Runfeng Wang
  • Manu P. Gangola
  • Craig Irvine
  • Pooran M. Gaur
  • Monica Båga
  • Ravindra N. ChibbarEmail author
Original Article

Abstract

Key message

Major QTL on LG 1 and 3 control seed filling and seed coat development, thereby affecting seed shape, size, color, composition and weight, key determinants of crop yield and quality.

Abstract

A chickpea (Cicer arietinum L.) population consisting of 189 recombinant inbred lines (RILs) derived from a cross between medium-protein ICC 995 and high-protein ICC 5912 genotypes of the desi market class was analyzed for seed properties. Seed from the parental lines and RILs was produced in four different environments for determination of seed shape (SS), 100-seed weight (100-SW), protein (PRO) and starch (STA) concentration. Polymorphic genetic markers for the population were identified by Genotyping by Sequencing and assembled into a 522.5 cM genetic map. Phenotype data from the different growth environments were analyzed by QTL mapping done by single and multi-environment analyses and in addition, single marker association mapping. The analyses identified in total 11 QTL, of which the most significant (P < 0.05) loci were located on LG 1 (q-1.1), LG 2 (q-2.1), LG 3 (q-3.2, q-3.3), LG 4 (q-4.2), and LG 5 (q-5.1). STA was mostly affected by q-1.1, which explained 19.0% of the phenotypic variance for the trait. The largest QTL effects were demonstrated by q-3.2 that explained 52.5% of the phenotypic variances for 100-SW, 44.3% for PRO, and 14.6% for SS. This locus was also highly associated with flower color (COL; 95.2% explained) and showed q-3.2 alleles from the ICC 5912 parent conferred the blue flower color and production of small, round seeds with relatively high protein concentration. Genes affecting seed filling at q-1.1 and seed coat development at q-3.2, respectively, were considered to underlie differences in seed composition and morphology in the RIL population.

Notes

Acknowledgements

This work was financially supported by Canada Research Chairs Program, Natural Sciences and Engineering Research Council, and Agriculture and Agri-Food Canada Internationalization program. The core research grant of International Crops Research Institute for Semi-Arid Tropics (ICRISAT, Patancheru, India) is acknowledged for the development of the chickpea RIL population and field trial at ICRISAT. RW is a grateful recipient of the China Scholarship Council fellowship for Ph.D. We are very grateful to Mr. John Bennet (Biggar Saskatchewan) and Mr. Jeff Sopatyk (Aberdeen, Saskatchewan) who provided land for the field trials.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interests.

Supplementary material

122_2019_3277_MOESM1_ESM.docx (14 kb)
Supplementary material 1 (DOCX 13 kb)
122_2019_3277_MOESM2_ESM.docx (14 kb)
Supplementary material 2 (DOCX 14 kb)
122_2019_3277_MOESM3_ESM.docx (14 kb)
Supplementary material 3 (DOCX 14 kb)
122_2019_3277_MOESM4_ESM.docx (16 kb)
Supplementary material 4 (DOCX 15 kb)
122_2019_3277_MOESM5_ESM.docx (13 kb)
Supplementary material 5 (DOCX 13 kb)
122_2019_3277_MOESM6_ESM.docx (15 kb)
Supplementary material 6 (DOCX 15 kb)
122_2019_3277_MOESM7_ESM.xlsx (52 kb)
Supplementary material 7 (XLSX 52 kb)

References

  1. Abbo S, Molina C, Jungmann R, Grusak MA, Berkovitch Z, Reifen R, Kahl G, Winter P, Reifen R (2005) Quantitative trait loci governing carotenoid concentration and weight in seeds of chickpea (Cicer arietinum L.). Theor Appl Genet 111:185–195.  https://doi.org/10.1007/s00122-005-1930-y CrossRefPubMedGoogle Scholar
  2. Ainsworth EA, Bush DR (2011) Carbohydrate export from the leaf: a highly regulated process and target to enhance photosynthesis and productivity. Plant Physiol 155:64–69.  https://doi.org/10.1104/pp.110.167684 CrossRefPubMedGoogle Scholar
  3. Alonso-Blanco C, Blankestijn-de Vries H, Hanhart CJ, Koornneef M (1999) Natural allelic variation at seed size loci in relation to other life history traits of Arabidopsis thaliana. Proc Natl Acad Sci 96:4710–4717.  https://doi.org/10.1073/pnas.96.8.4710 CrossRefPubMedGoogle Scholar
  4. Bajaj D, Das S, Upadhyaya HD, Ranjan R, Badoni S, Kumar V, Tripathi S, Gowda CLL, Sharma S, Singh S, Tyagi AK, Parida SK (2015) A genome-wide combinatorial strategy dissects complex genetic architecture of seed coat color in chickpea. Front Plant Sci 6:979.  https://doi.org/10.3389/fpls.2015.00979 CrossRefPubMedPubMedCentralGoogle Scholar
  5. Baxter IR, Young JC, Armstrong G, Foster N, Bogenschutz N, Cordova T, Peer WA, Hazen SP, Murphy AS, Harper JF (2005) A plasma membrane H + -ATPase is required for the formation of proanthocyanidins in the seed coat endothelium of Arabidopsis thaliana. Proc Natl Acad Sci 102:2649–2654.  https://doi.org/10.1073/pnas.0406377102 CrossRefPubMedGoogle Scholar
  6. Berger F, Chaudhury A (2009) Parental memories shape seeds. Trends Plant Sci 14:550–556.  https://doi.org/10.1016/j.tplants.2009.08.003 CrossRefPubMedGoogle Scholar
  7. Bolger AM, Lohse M, Usadel B (2014) Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30:2114–2120.  https://doi.org/10.1093/bioinformatics/btu170 CrossRefPubMedPubMedCentralGoogle Scholar
  8. Borisjuk L, Rolletschek H, Walenta S, Panitz R, Wobus U, Weber H (2003) Energy status and its control on embryogenesis of legumes: ATP distribution within Vicia faba embryos is developmentally regulated and correlated with photosynthetic capacity. Plant J 36:318–329.  https://doi.org/10.1046/j.1365-313X.2003.01879.x CrossRefPubMedGoogle Scholar
  9. Cobos MJ, Winter P, Kharrat M, Cubero JI, Gil J, Millan T, Rubio J (2009) Genetic analysis of agronomic traits in a wide cross of chickpea. Field Crop Res 111:130–136.  https://doi.org/10.1016/j.fcr.2008.11.006 CrossRefGoogle Scholar
  10. Cowan RK, Hoen DR, Schoen DJ, Bureau TE (2005) MUSTANG is a novel family of domesticated transposase genes found in diverse angiosperms. Mol Biol Evol 22:2084–2089.  https://doi.org/10.1093/molbev/msi202 CrossRefPubMedGoogle Scholar
  11. Danecek P, Auton A, Abecasis G, Albers CA, Banks E, DePristo MA, Handsaker RE, Lunter G, Marth GT, Sherry ST, McVean G, Durbin R (2011) The variant call format and VCFtools. Bioinformatics 27:2156–2158.  https://doi.org/10.1093/bioinformatics/btr330 CrossRefPubMedPubMedCentralGoogle Scholar
  12. Das S, Upadhyaya HD, Bajaj D, Kujur A, Badoni S, Laxmi Kumar V, Tripathi S, Gowda CLL, Sharma S, Singh S, Tyagi AK, Parida SK (2015) Deploying QTL-seq for rapid delineation of a potential candidate gene underlying major trait-associated QTL in chickpea. DNA Res 22:193–203.  https://doi.org/10.1093/dnares/dsv004 CrossRefPubMedPubMedCentralGoogle Scholar
  13. Doddamani D, Katta MAVSK, Khan AW, Agarwal G, Shah TM, Varshney RK (2014) CicArMiSatDB: the chickpea microsatellite database. BMC Bioinform 15:212.  https://doi.org/10.1186/1471-2105-15-212 CrossRefGoogle Scholar
  14. Doughty J, Aljabri M, Scott RJ (2014) Flavonoids and the regulation of seed size in Arabidopsis. Biochem Soc Trans 42:364–369.  https://doi.org/10.1042/BST20140040 CrossRefPubMedGoogle Scholar
  15. Edwards D (2016) Improved desi reference genome. CyVerse Data Commons.  https://doi.org/10.7946/P2KW2Q CrossRefGoogle Scholar
  16. Faraco M, Spelt C, Bliek M, Verweij W, Hoshino A, Espen L, Prinsi B, Jaarsma R, Tarhan E, DeBoer AH, Di Sansebastiano G-P, Koes R, Quattrocchio FM (2014) Hyperacidification of vacuoles by the combined action of two different P-ATPases in the tonoplast determines flower color. Cell Rep 6:32–43.  https://doi.org/10.1016/j.celrep.2013.12.009 CrossRefPubMedGoogle Scholar
  17. Figueiredo DD, Batista RA, Roszak PJ, Hennig L, Köhler C (2016) Auxin production in the endosperm drives seed coat development in Arabidopsis. Elife 5:e20542.  https://doi.org/10.7554/eLife.20542 CrossRefPubMedPubMedCentralGoogle Scholar
  18. Folsom JJ, Begcy K, Hao X, Wang D, Walia H (2014) Rice fertilization-independent endosperm1 regulates seed size under heat stress by controlling early endosperm development. Plant Physiol 165:238–248.  https://doi.org/10.1104/pp.113.232413 CrossRefPubMedPubMedCentralGoogle Scholar
  19. Garcia D, Fitz Gerald JN, Berger F (2005) Maternal control of integument cell elongation and zygotic control of endosperm growth are coordinated to determine seed size in Arabidopsis. Plant Cell 17:52–60.  https://doi.org/10.1105/tpc.104.027136 CrossRefPubMedPubMedCentralGoogle Scholar
  20. Gaur PM, Singh MK, Samineni S, Sajja SB, Jukanti AK, Kamatam S, Varshney RK (2016) Inheritance of protein content and its relationships with seed size, grain yield and other traits in chickpea. Euphytica 209:253–260.  https://doi.org/10.1007/s10681-016-1678-2 CrossRefGoogle Scholar
  21. Glaubitz JC, Casstevens TM, Lu F, Harriman J, Elshire RJ, Sun Q, Buckler ES (2014) TASSEL-GBS: a high capacity genotyping by sequencing analysis pipeline. PLoS ONE 9:e90346.  https://doi.org/10.1371/journal.pone.0090346 CrossRefPubMedPubMedCentralGoogle Scholar
  22. Hehenberger E, Kradolfer D, Köhler C (2012) Endosperm cellularization defines an important developmental transition for embryo development. Development 139:2031–2039.  https://doi.org/10.1242/dev.077057 CrossRefPubMedGoogle Scholar
  23. Hossain S, Ford R, McNeil D, Pittock C, Panozzo JF (2010) Inheritance of seed size in chickpea (Cicer arietinum L.) and identification of QTL based on 100-seed weight and seed size index. Aust J Crop Sci 4:126–135Google Scholar
  24. Hurkman WJ, Wood DF (2011) High temperature during grain fill alters the morphology of protein and starch deposits in the starchy endosperm cells of developing wheat (Triticum aestivum L.) grain. J Agric Food Chem 59:4938–4946.  https://doi.org/10.1021/jf102962t CrossRefPubMedGoogle Scholar
  25. Ingouff M, Jullien PE, Berger F (2006) The female gametophyte and the endosperm control cell proliferation and differentiation of the seed coat in Arabidopsis. Plant Cell 18:3491–3501.  https://doi.org/10.1105/tpc.106.047266 CrossRefPubMedPubMedCentralGoogle Scholar
  26. Jadhav AA, Rayate SJ, Mhase LB, Thudi M, Chitikineni A, Harer PN, Jadhav AS, Varshney RK, Kulwal PL (2015) Marker-trait association study for protein content in chickpea (Cicer arietinum L.). J Genet 94:279–286CrossRefPubMedGoogle Scholar
  27. Jain M, Misra G, Patel RK, Priya P, Jhanwar S, Khan AW, Shah N, Singh VK, Garg R, Jeena G, Yadav M, Kant C, Sharma P, Yadav G, Bhatia S, Tyagi AK, Chattopadhyay D (2013) A draft genome sequence of the pulse crop chickpea (Cicer arietinum L.). Plant J 74:715–729.  https://doi.org/10.1111/tpj.12173 CrossRefPubMedGoogle Scholar
  28. Joly-Lopez Z, Forczek E, Hoen DR, Juretic N, Bureau TE (2012) A gene family derived from transposable elements during early angiosperm evolution has reproductive fitness benefits in Arabidopsis thaliana. PLoS Genet.  https://doi.org/10.1371/journal.pgen.1002931 CrossRefPubMedPubMedCentralGoogle Scholar
  29. Kaushal N, Awasthi R, Gupta K, Gaur P, Siddique KHM, Nayyar H (2013) Heat-stress-induced reproductive failures in chickpea (Cicer arietinum) are associated with impaired sucrose metabolism in leaves and anthers. Funct Plant Biol 40:1334–1349.  https://doi.org/10.1071/FP13082 CrossRefGoogle Scholar
  30. Knights EJ, Wood JA, Harden S (2011) A gene influencing seed shape of desi type chickpea (Cicer arietinum L.). Plant Breed 130:278–280.  https://doi.org/10.1111/j.1439-0523.2010.01810.x CrossRefGoogle Scholar
  31. Kujur A, Upadhyaya HD, Shree T, Bajaj D, Das S, Saxena MS, Badoni S, Kumar V, Tripathi S, Gowda CLL, Sharma S, Singh S, Tyagi AK, Parida SK (2015) Ultra-high density intra-specific genetic linkage maps accelerate identification of functionally relevant molecular tags governing important agronomic traits in chickpea. Sci Rep 5:9468.  https://doi.org/10.1038/srep09468 CrossRefPubMedPubMedCentralGoogle Scholar
  32. Lafon-Placette C, Köhler C (2014) Embryo and endosperm, partners in seed development. Curr Opin Plant Biol 17:64–69.  https://doi.org/10.1016/j.pbi.2013.11.008 CrossRefPubMedGoogle Scholar
  33. Langmead B, Trapnell C, Pop M, Salzberg SL (2009) Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol 10:R25.  https://doi.org/10.1186/gb-2009-10-3-r25 CrossRefPubMedPubMedCentralGoogle Scholar
  34. Lefèvre F, Boutry M (2018) Towards identification of the substrates of ATP-binding cassette transporters. Plant Physiol 178:00325.  https://doi.org/10.1104/pp.18.00325 CrossRefGoogle Scholar
  35. Lepiniec L, Debeaujon I, Routaboul J-M, Baudry A, Pourcel L, Nesi N, Caboche M (2006) Genetics and biochemistry of seed flavonoids. Annu Rev Plant Biol 57:405–430.  https://doi.org/10.1146/annurev.arplant.57.032905.105252 CrossRefPubMedGoogle Scholar
  36. Li N, Li Y (2016) Signaling pathways of seed size control in plants. Curr Opin Plant Biol 33:23–32.  https://doi.org/10.1016/j.pbi.2016.05.008 CrossRefPubMedGoogle Scholar
  37. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R (2009) The sequence alignment/map format and SAMtools. Bioinformatics 25:2078–2079.  https://doi.org/10.1093/bioinformatics/btp352 CrossRefPubMedPubMedCentralGoogle Scholar
  38. Li Y, Ruperao P, Batley J, Edwards D, Khan T, Colmer TD, Pang J, Siddique KHM, Sutton T (2018) Investigating drought tolerance in chickpea using genome-wide association mapping and genomic selection based on whole-genome resequencing data. Front Plant Sci 9:1–12.  https://doi.org/10.3389/fpls.2018.00190 CrossRefGoogle Scholar
  39. Magrane M, Consortium UP (2011) UniProt Knowledgebase: a hub of integrated protein data. Database 2011, bar009.  https://doi.org/10.1093/database/bar009
  40. Mascher M, Wu S, St. Amand P, Stein N, Poland J (2013) Application of genotyping-by-sequencing on semiconductor sequencing platforms: a comparison of genetic and reference-based marker ordering in barley. PLoS ONE 8:e76925.  https://doi.org/10.1371/journal.pone.0076925 CrossRefPubMedPubMedCentralGoogle Scholar
  41. Mizukami Y (2001) A matter of size: developmental control of organ size in plants. Curr Opin Plant Biol 4:533–539.  https://doi.org/10.1016/S1369-5266(00)00212-0 CrossRefPubMedGoogle Scholar
  42. Morley-Smith ER, Pike MJ, Findlay K, Köckenberger W, Hill LM, Smith AM, Rawsthorne S (2008) The transport of sugars to developing embryos is not via the bulk endosperm in oilseed rape seeds. Plant Physiol 147:2121–2130.  https://doi.org/10.1104/pp.108.124644 CrossRefPubMedPubMedCentralGoogle Scholar
  43. Parween S, Nawaz K, Roy R, Pole AK, Suresh BV, Misra G, Jain M, Yadav G, Parida SK, Tyagi AK, Bhatia S, Chattopadhyay D (2015) An advanced draft genome assembly of a desi type chickpea (Cicer arietinum L). Sci Rep 5:12806.  https://doi.org/10.1038/srep12806 CrossRefPubMedPubMedCentralGoogle Scholar
  44. Ruan Y-L, Patrick JW, Bouzayen M, Osorio S, Fernie AR (2012) Molecular regulation of seed and fruit set. Trends Plant Sci 17:656–665.  https://doi.org/10.1016/j.tplants.2012.06.005 CrossRefPubMedGoogle Scholar
  45. Saxena MS, Bajaj D, Das S, Kujur A, Kumar V, Singh M, Bansal KC, Tyagi AK, Parida SK (2014) An integrated genomic approach for rapid delineation of candidate genes regulating agro-morphological traits in chickpea. DNA Res 21:695–710.  https://doi.org/10.1093/dnares/dsu031 CrossRefPubMedPubMedCentralGoogle Scholar
  46. Sonah H, Bastien M, Iquira E, Tardivel A, Légaré G, Boyle B, Normandeau É, Laroche J, Larose S, Jean M, Belzile F (2013) An improved genotyping by sequencing (GBS) approach offering increased versatility and efficiency of SNP discovery and genotyping. PLoS ONE 8:e54603.  https://doi.org/10.1371/journal.pone.0054603 CrossRefPubMedPubMedCentralGoogle Scholar
  47. Sun X, Shantharaj D, Kang X, Ni M (2010) Transcriptional and hormonal signaling control of Arabidopsis seed development. Curr Opin Plant Biol 13:611–620.  https://doi.org/10.1016/j.pbi.2010.08.009 CrossRefPubMedGoogle Scholar
  48. Szklarczyk D, Franceschini A, Wyder S, Forslund K, Heller D, Huerta-Cepas J, Simonovic M, Roth A, Santos A, Tsafou KP, Kuhn M, Bork P, Jensen LJ, von Mering C (2015) STRING v10: protein-protein interaction networks, integrated over the tree of life. Nucleic Acids Res 43:D447–D452.  https://doi.org/10.1093/nar/gku1003 CrossRefPubMedGoogle Scholar
  49. Tondelli A, Francia E, Barabaschi D, Aprile A, Skinner JS, Stockinger EJ, Stanca AM, Pecchioni N (2006) Mapping regulatory genes as candidates for cold and drought stress tolerance in barley. Theor Appl Genet 112:445–454.  https://doi.org/10.1007/s00122-005-0144-7 CrossRefPubMedGoogle Scholar
  50. Upadhyaya HD, Bajaj D, Das S, Kumar V, Gowda CLL, Sharma S, Tyagi AK, Parida SK (2016a) Genetic dissection of seed-iron and zinc concentrations in chickpea. Sci Rep 6:24050.  https://doi.org/10.1038/srep24050 CrossRefPubMedPubMedCentralGoogle Scholar
  51. Upadhyaya HD, Bajaj D, Narnoliya L, Das S, Kumar V, Gowda CLL, Sharma S, Tyagi AK, Parida SK (2016b) Genome-wide scans for delineation of candidate genes regulating seed-protein content in chickpea. Front Plant Sci 7:302.  https://doi.org/10.3389/fpls.2016.00302 CrossRefPubMedPubMedCentralGoogle Scholar
  52. van Ooijen JW, Voorips RE (2001) JoinMap 3.0, software for the calculation of genetic linkage mapsGoogle Scholar
  53. Varshney RK, Song C, Saxena RK, Azam S, Yu S, Sharpe AG, Cannon S, Baek J, Rosen BD, Tar’an B, Millan T, Zhang X, Ramsay LD, Iwata A, Wang Y, Nelson W, Farmer AD, Gaur PM, Soderlund C, Penmetsa RV, Xu C, Bharti AK, He W, Winter P, Zhao S, Hane JK, Carrasquilla-Garcia N, Condie JA, Upadhyaya HD, Luo M-C, Thudi M, Gowda CLL, Singh NP, Lichtenzveig J, Gali KK, Rubio J, Nadarajan N, Dolezel J, Bansal KC, Xu X, Edwards D, Zhang G, Kahl G, Gil J, Singh KB, Datta SK, Jackson SA, Wang J, Cook DR (2013) Draft genome sequence of chickpea (Cicer arietinum) provides a resource for trait improvement. Nat Biotechnol 31:240–246.  https://doi.org/10.1038/nbt.2491 CrossRefPubMedGoogle Scholar
  54. Verma M, Kumar V, Patel RK, Garg R, Jain M (2015a) CTDB: an integrated chickpea transcriptome database for functional and applied genomics. PLoS ONE 10:1371.  https://doi.org/10.1371/journal.pone.0136880 CrossRefGoogle Scholar
  55. Verma S, Gupta S, Bandhiwal N, Kumar T, Bharadwaj C, Bhatia S (2015b) High-density linkage map construction and mapping of seed trait QTLs in chickpea (Cicer arietinum L) using genotyping-by-sequencing (GBS). Sci Rep 5:17512.  https://doi.org/10.1038/srep17512 CrossRefPubMedPubMedCentralGoogle Scholar
  56. Verweij W, Spelt C, Di Sansebastiano G-P, Vermeer J, Reale L, Ferranti F, Koes R, Quattrocchio F (2008) An H + P-ATPase on the tonoplast determines vacuolar pH and flower colour. Nat Cell Biol 10:1456–1462.  https://doi.org/10.1038/ncb1805 CrossRefPubMedGoogle Scholar
  57. Voorrips R (2002) MapChart: software for the graphical presentation of linkage maps and QTLs. J Hered 93:77–78CrossRefPubMedGoogle Scholar
  58. Wang R, Gangola MP, Jaiswal S, Båga M, Gaur PM, Chibbar RN (2017) Variation in seed-quality traits of chickpea and their correlation to raffinose family oligosaccharides concentrations. Crop Sci 57:1594–1602.  https://doi.org/10.2135/cropsci2016.08.0710 CrossRefGoogle Scholar
  59. Weber H, Borisjuk L, Wobus U (2005) Molecular physiology of legume seed development. Annu Rev Plant Biol 56:253–279.  https://doi.org/10.1146/annurev.arplant.56.032604.144201 CrossRefPubMedGoogle Scholar
  60. Wood JA, Grusak MA (2007) Nutritional value of chickpea. In: Yadav SS, Redden R, Chen W, Sharma B (eds) Chickpea breeding and management. CAB International, Wallingford, pp 101–142CrossRefGoogle Scholar
  61. Wood JA, Knights EJ, Campbell GM, Choct M (2014) Differences between easy- and difficult-to-mill chickpea (Cicer arietinum L.) genotypes. Part I: broad chemical composition. J Sci Food Agric 94:1437–1445.  https://doi.org/10.1002/jsfa.6437 CrossRefPubMedGoogle Scholar
  62. Yang J, Hu C, Hu H, Yu R, Xia Z, Ye X, Zhu J (2008) QTLNetwork: mapping and visualizing genetic architecture of complex traits in experimental populations. Bioinformatics 24:721–723.  https://doi.org/10.1093/bioinformatics/btm494 CrossRefPubMedGoogle Scholar
  63. Yu S-M, Lo S-F, Ho T-HD (2015) Source-sink communication: regulated by hormone, nutrient, and stress cross-signaling. Trends Plant Sci 20:844–857.  https://doi.org/10.1016/j.tplants.2015.10.009 CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Plant SciencesUniversity of SaskatchewanSaskatoonCanada
  2. 2.International Crops Research Institute for the Semi-Arid Tropics (ICRISAT)Patancheru, HyderabadIndia

Personalised recommendations