Advertisement

Theoretical and Applied Genetics

, Volume 132, Issue 4, pp 1159–1177 | Cite as

Identification of co-located QTLs and genomic regions affecting grapevine cluster architecture

  • Robert Richter
  • Doreen Gabriel
  • Florian Rist
  • Reinhard Töpfer
  • Eva ZyprianEmail author
Original Article
  • 219 Downloads

Abstract

Loose cluster architecture is an important aim in grapevine breeding since it has high impact on the phytosanitary status of grapes. This investigation analyzed the contributions of individual cluster sub-traits to the overall trait of cluster architecture. Six sub-traits showed large impact on cluster architecture as major determinants. They explained 57% of the OIV204 descriptor for cluster compactness rating in a highly diverse cross-population of 149 genotypes. Genetic analysis revealed several genomic regions involved in the expression of this trait. Based on the linkage of phenotypic features to molecular markers, QTL calculations shed new light on the genetic determinants of cluster architecture. Eight QTL clusters harbor overlapping confidence intervals of up to four co-located QTLs. A physical projection of the QTL clusters by confidence interval-flanking markers onto the PN40024 reference genome sequence revealed genes enriched in these regions.

Notes

Acknowledgements

We wish to thank Sarina Elser for expert technical assistance. This work was funded by the “Federal Program for Ecologic Landuse and other forms of Sustainable Agriculture” (Bundesprogramm Ökologischer Landbau und andere Formen nachhaltiger Landwirtschaft, BÖLN) of BLE (Bundesanstalt für Landwirtschaft und Ernährung) Federal Office for Agriculture and Food under the title “MATA- Molekulare Analyse der Traubenarchitektur” (Molecular analysis of cluster architecture) FKZ 2811NA056 (www.ble.de).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

122_2018_3269_MOESM1_ESM.pdf (358 kb)
Online Resource 1 Pictures of the parental types of the cross GF.GA-47-42 × ‘Villard Blanc’. Both varieties showed reduced cluster compactness. A) maternal parent GF.GA-47-42 B) paternal parent ‘Villard Blanc’. (PDF 358 kb)
122_2018_3269_MOESM2_ESM.pdf (271 kb)
Online Resource 2 Comparison of the correlation among cluster architecture sub-traits in a correlation matrix. Cluster architecture sub-traits measured in the growing season 2015 (A), 2016 (B) and combined 2015 + 2016 (C) as Kendall’s tau-b correlation coefficient. Nonsignificant correlations are depicted as 0. (see Table 1 for full sub-trait names) (PDF 270 kb)
122_2018_3269_MOESM3_ESM.pdf (247 kb)
Online Resource 3 Overview of the importance of cluster architecture variables for the prediction of the OIV204 compactness descriptor using the “cforest” function for random forest calculation with the R-package “party.” The quality of the importance prediction was assessed with error estimates, i.e., error rate, ranked probability scores (RPS), mean absolute error (MAE), mean standard error (MSE). The combined 2015 and 2016 dataset was used with season as predictor variable (A) and without season as predictor variable (B). (PDF 246 kb)
122_2018_3269_MOESM4_ESM.pdf (743 kb)
Online Resource 4 x-axis: Manifestation of cluster architecture sub-trait. y-axis: predicted probability of OIV class membership. The 2015 and 2016 data of 149 F1 genotypes of the cross GF.GA-47-42 × ‘Villard Blanc’ was grouped according to growing season (15, 16) and flower sex (hermaphrodite (H) and female (F) in the left column and analyzed without regard to growing season (right column). (PDF 742 kb)
122_2018_3269_MOESM5_ESM.pdf (180 kb)
Online Resource 5 Error rate (ER) assessment for the prediction accuracy in cumulative link models (CLMs) over OIV204 classes and flower sex. For CLMs with the lowest AIC values (see Table 2) the ER was used to assess the prediction accuracy. OIV204 classes and flower sex members exhibited different error rates. All model variants were assessed with a mixed dataset neglecting the season information (-season) or using season as additional factor variable for modeling (+season) (PDF 180 kb)
122_2018_3269_MOESM6_ESM.pdf (304 kb)
Online Resource 6 QTLs related to cluster architecture in 149 F1 individuals of the segregating population of the cross GF.GA-47-42 × ‘Villard Blanc’ calculated with interval mapping (IM) and interval mapping with flower sex as co-factor (FS) during four growing seasons. Cluster architecture traits in bold do statistically contribute to a high extent to cluster architecture (PDF 304 kb)
122_2018_3269_MOESM7_ESM.pdf (177 kb)
Online Resource 7 QTL comparison. Attributes of QTLs reproducibly calculated in the cross-population with interval mapping (IM) and with interval mapping applying flower sex as co-variable for interval mapping (IM + FS). (PDF 177 kb)
122_2018_3269_MOESM8_ESM.pdf (284 kb)
Online Resource 8 Table of Gene ontology (GO) enrichment analysis with genes positioned in confidence intervals of cluster architecture-related QTLs, compared to all the genes in the reference genome PN40024 12x V2 (PDF 283 kb)

References

  1. Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS, Eppig JT et al (2000) Gene ontology: tool for the unification of biology. Nature Genet 25:25CrossRefGoogle Scholar
  2. Ban Y, Mitani N, Sato A, Kono A, Hayashi T (2016) Genetic dissection of quantitative trait loci for berry traits in interspecific hybrid grape (Vitis labruscana × Vitis vinifera). Euphytica 211(3):295–310CrossRefGoogle Scholar
  3. Becker T, Knoche M (2012) Water induces microcracks in the grape berry cuticle. Vitis 51(3):141–142Google Scholar
  4. BMELV (2010) Gute fachliche Praxis im Pflanzenschutz: Bundesministerium für Ernährung Landwirtschaft und Verbraucherschutz (BMELV)Google Scholar
  5. Boulesteix AL, Janitza S, Kruppa J, König I (2012) Overview of random forest methodology and practical guidance with emphasis on computational biology and bioinformatics. Wiley Interdiscip Rev Data Min Knowl Discov 2(6):493–507CrossRefGoogle Scholar
  6. Breiman L (2001) Random forests. Mach Learn 45(1):5–32CrossRefGoogle Scholar
  7. Broome JC, English JT, Marois JJ, Latorre BA, Aviles JC (1995) Development of an infection model for Botrytis bunch rot of grapes based on wetness duration and temperature. Phytopath 85(1):97–102.  https://doi.org/10.1094/Phyto-85-97 CrossRefGoogle Scholar
  8. Burnham KP, Anderson DR (2002) Model selection and multimodel inference: a practical information-theoretic approach, 2nd edn. Springer, New YorkGoogle Scholar
  9. Cabezas JA, Cervera MT, Ruiz-Garcia L, Carreno J, Martinez-Zapater JM (2006) A genetic analysis of seed and berry weight in grapevine. Genome 49(12):1572–1585.  https://doi.org/10.1139/G06-122 CrossRefGoogle Scholar
  10. Calcagno V, de Mazancourt C (2010) glmulti: an R package for easy automated model selection with (generalized) linear models. J Stat Softw 34(12):1–29CrossRefGoogle Scholar
  11. Canaguier A, Grimplet J, Di Gaspero G, Scalabrin S, Duchêne E, Choisne N, Mohellibi N, Guichard C, Rombauts S, Le Clainche I, Bérard A, Chauveau A, Bounon R, Rustenholz C, Morgante M, Le Paslier MC, Brunel D, Adam-Blondon AF (2017) A new version of the grapevine reference genome assembly (12X.v2) and of its annotation (VCost.v3). Genom Data 14:56–62.  https://doi.org/10.1016/j.gdata.2017.09.002 CrossRefGoogle Scholar
  12. Christensen RHB (2018) Ordinal-regression models for ordinal data. R package version 2018, pp 4–19Google Scholar
  13. Coombe BG (1960) Relationship of growth and development to changes in sugars, auxins and gibberellins in fruit of seeded and seedless varieties of Vitis vinifera. Plant Physiol 35(2):241–250CrossRefGoogle Scholar
  14. Coombe BG (1973) The regulation of set and development of the grape berry. International Society for Horticultural Science (ISHS), Leuven, Belgium, p 261Google Scholar
  15. Correa J, Mamani M, Munoz-Espinoza C, Laborie D, Munoz C, Pinto M, Hinrichsen P (2014) Heritability and identification of QTLs and underlying candidate genes associated with the architecture of the grapevine cluster (Vitis vinifera L.). Theor Appl Genet 127:1143–1162CrossRefGoogle Scholar
  16. Costantini L, Battilana J, Lamaj F, Fanizza G, Grando MS (2008) Berry and phenology-related traits in grapevine (Vitis vinifera L.): from quantitative trait loci to underlying genes. BMC Plant Biol 8(1):38.  https://doi.org/10.1186/1471-2229-8-38 CrossRefGoogle Scholar
  17. Di Genova A, Almeida AM, Munoz-Espinoza C, Vizoso P, Travisany D, Moraga C, Pinto M, Hinrichsen P, Orellana A, Maass A (2014) Whole genome comparison between table and wine grapes reveals a comprehensive catalog of structural variants. BMC Plant Biol 14:7.  https://doi.org/10.1186/1471-2229-14-7 CrossRefGoogle Scholar
  18. Doligez A, Bertrand Y, Farnos M, Grolier M, Romieu C, Esnault F, Dias S, Berger G, Francois P, Pons T, Ortigosa P, Roux C, Houel C, Laucou V, Bacilieri R, Peros JP, This P (2013) New stable QTLs for berry weight do not colocalize with QTLs for seed traits in cultivated grapevine (Vitis vinifera L.). BMC Plant Biol 13:217.  https://doi.org/10.1186/1471-2229-13-217 CrossRefGoogle Scholar
  19. Fanizza G, Lamaj F, Costantini L, Chaabane R, Grando (2005) QTL analysis for fruit yield components in table grapes (Vitis vinifera). Theor Appl Genet 111(4):658–664.  https://doi.org/10.1007/s00122-005-2016-6 CrossRefGoogle Scholar
  20. Fechter I, Hausmann L, Daum M, Sorensen TR, Viehöver P, Weisshaar B, Töpfer R (2012) Candidate genes within a 143 kb region of the flower sex locus in Vitis. Mol Genet Genomics 287(3):247–259.  https://doi.org/10.1007/s00438-012-0674-z CrossRefGoogle Scholar
  21. Fornara F, de Montaigu A, Sánchez-Villarreal A, Takahashi Y, Loren Ver, van Themaat E, Huettel B, Davis SJ, Coupland G (2015) The GI–CDF module of Arabidopsis affects freezing tolerance and growth as well as flowering. Plant J 81(5):695–706CrossRefGoogle Scholar
  22. Fox J, Monette G (1992) Generalized collinearity diagnostics. J Am Stat Assoc 87(417):178–183.  https://doi.org/10.1080/01621459.1992.10475190 CrossRefGoogle Scholar
  23. Fujita A, Goto-Yamamoto N, Aramaki I, Hashizume K (2006) Organ-specific transcription of putative flavonol synthase genes of grapevine and effects of plant hormones and shading on flavonol biosynthesis in grape berry skins. Biosci Biotechnol Biochem 70(3):632–638CrossRefGoogle Scholar
  24. Gabler FM, Smilanick JL, Mansour M, Ramming DW, Mackey BE (2003) Correlations of morphological, anatomical, and chemical features of grape berries with resistance to Botrytis cinerea. Phytopathology 93(10):1263–1273.  https://doi.org/10.1094/Phyto.2003.93.10.1263 CrossRefGoogle Scholar
  25. Gourieroux AM, McCully ME, Holzapfel BP, Scollary GR, Rogiers SY (2016) Flowers regulate the growth and vascular development of the inflorescence rachis in Vitis vinifera L. Plant Physiol Biochem 108:519–529CrossRefGoogle Scholar
  26. Grimplet J, Tello J, Laguna N, Ibanez J (2017) Differences in flower transcriptome between grapevine clones are related to their cluster compactness, fruitfulness, and berry size. Front Plant Sci 8:17CrossRefGoogle Scholar
  27. Gross J, Cho WK, Lezhneva L, Falk J, Krupinska K, Shinozaki K, Seki M, Herrmann RG, Meurer J (2006) A plant locus essential for phylloquinone (Vitamin K1) biosynthesis originated from a fusion of four eubacterial genes. J Biol Chem 281:17189–17196.  https://doi.org/10.1074/jbc.M601754200 CrossRefGoogle Scholar
  28. Hair J, Anderson R, Tatham R, Black W (2010) Multivariate data analysis, 7th edn. Pearson, New YorkGoogle Scholar
  29. Han J, Kamber M, Pei J (2012) Data Mining: concepts and techniques. In: Data mining. 3rd edn. Morgan Kaufmann, Boston, pp 443–541.  https://doi.org/10.1016/B978-0-12-381479-1.00016-2
  30. Hayes S, Velanis CN, Jenkins GI, Franklin KA (2014) UV-B detected by the UVR8 photoreceptor antagonizes auxin signaling and plant shade avoidance. Proc Natl Acad Sci 111:11894CrossRefGoogle Scholar
  31. Hed B, Ngugi HK, Travis JW (2010) Use of gibberellic acid for management of bunch rot on Chardonnay and Vignoles grape. Plant Dis 95(3):269–278.  https://doi.org/10.1094/PDIS-05-10-0382 CrossRefGoogle Scholar
  32. Heijde M, Ulm R (2012) UV-B photoreceptor-mediated signalling in plants. Trends Plant Sci 17:230–237CrossRefGoogle Scholar
  33. Herzog K, Wind R, Töpfer R (2015) Impedance of the grape berry cuticle as a novel phenotypic trait to estimate resistance to Botrytis cinerea. Sensors 15(6):12498–12512.  https://doi.org/10.3390/s150612498 CrossRefGoogle Scholar
  34. Hothorn T, Buehlmann P, Dudoit S, Molinaro A, Van Der Laan M (2006) Survival ensembles. Biostat 7(3):355–373CrossRefGoogle Scholar
  35. Houel C, Martin-Magniette ML, Nicolas SD, Lacombe T, Le Cunff L, Franck D, Torregrosa L, Conejero G, Lalet S, This P, Adam-Blondon AF (2013) Genetic variability of berry size in the grapevine (Vitis vinifera L.). Aust J Grape Wine Res 19(2):208–220.  https://doi.org/10.1111/ajgw.12021 CrossRefGoogle Scholar
  36. Janitza S, Tutz G, Boulesteix A-L (2016) Random forest for ordinal responses: prediction and variable selection. Comput Stat Data Anal 96:57–73CrossRefGoogle Scholar
  37. Kassambara A (2017) Practical guide to cluster analysis in R: unsupervised machine learning. vol 1. STHDAGoogle Scholar
  38. Kicherer A, Roscher R, Herzog K, Šimon S, Förstner W, Töpfer R (2013) BAT (Berry Analysis Tool): a high-throughput image interpretation tool to acquire the number, diameter, and volume of grapevine berries. Vitis 52(3):129–135Google Scholar
  39. Lê S, Josse J, Husson F (2008) FactoMineR: an R package for multivariate analysis. J Stat Softw 25(1):18.  https://doi.org/10.18637/jss.v025.i01 CrossRefGoogle Scholar
  40. Li-Mallet A, Rabot A, Geny L (2016) Factors controlling inflorescence primordia formation of grapevine: their role in latent bud fruitfulness? A review. Botany 94(3):147–163.  https://doi.org/10.1139/cjb-2015-0108 CrossRefGoogle Scholar
  41. Marguerit E, Boury C, Manicki A, Donnart M, Butterlin G, Nemorin A, Wiedemann-Merdinoglu S, Merdinoglu D, Ollat N, Decroocq S (2009) Genetic dissection of sex determinism, inflorescence morphology and downy mildew resistance in grapevine. Theor Appl Genet 118(7):1261–1278.  https://doi.org/10.1007/s00122-009-0979-4 CrossRefGoogle Scholar
  42. Mi H, Huang X, Muruganujan A, Tang H, Mills C, Kang D, Thomas PD (2017) PANTHER version 11: expanded annotation data from gene ontology and reactome pathways, and data analysis tool enhancements. Nucleic Acids Res 45(Database issue):D183–D189.  https://doi.org/10.1093/nar/gkw1138 CrossRefGoogle Scholar
  43. Migicovsky Z, Sawler J, Gardner KM, Aradhya MK, Prins BH, Schwaninger HR, Bustamante CD, Buckler ES, Zhong G-Y, Brown PJ, Myles S (2017) Patterns of genomic and phenomic diversity in wine and table grapes. Hortic Res 4:17035CrossRefGoogle Scholar
  44. Molitor D, Behr M, Hoffmann L, Evers D (2012) Impact of grape cluster division on cluster morphology and bunch rot epidemic. Am J Enol Vitic 63(4):508CrossRefGoogle Scholar
  45. Nair NG, Allen RN (1993) Infection of grape flowers and berries by Botrytis cinerea as a function of time and temperature. Mycol Res 97(8):1012–1014.  https://doi.org/10.1016/S0953-7562(09)80871-X CrossRefGoogle Scholar
  46. Nelson KE (1956) The effect of Botrytis infection on the tissue of Tokay grapes. Phytopath 46(4):223–229Google Scholar
  47. OIV (2017) 2017 World Vitiviniculture Situation. OIV Statistical Report on World Vitiviniculture. International Organisation of Vine and Wine, Paris. http://www.oiv.int/. Accessed Dec 2018
  48. OIV (2015) 2nd edition of the OIV descriptor list for grape varieties and Vitis species. http://www.oiv.int/. Accessed Dec 2018
  49. Perez FJ, Viani C, Retamales J (2000) Bioactive gibberellins in seeded and seedless grapes: identification and changes in content during berry development. American J Enoland Vitic 51(4):315–318Google Scholar
  50. Pertot I, Caffi T, Rossi V, Mugnai L, Hoffmann C, Grando MS, Gary C, Lafond D, Duso C, Thiery D, Mazzoni V, Anfora G (2017) A critical review of plant protection tools for reducing pesticide use on grapevine and new perspectives for the implementation of IPM in viticulture. Crop Prot 97:70–84.  https://doi.org/10.1016/j.cropro.2016.11.025 CrossRefGoogle Scholar
  51. Pieri P, Zott K, Gomes E, Hibert G (2016) Nested effects of berry half, berry and bunch microclimate on biochemical composition in grape. Oeno One 50(3):145–159CrossRefGoogle Scholar
  52. R Core Team (2017) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.r-project.org. Accessed Sept 2018
  53. Ren H, Gray WM (2015) SAUR proteins as effectors of hormonal and environmental signals in plant growth. Mol Plant 8(8):1153–1164.  https://doi.org/10.1016/j.molp.2015.05.003 CrossRefGoogle Scholar
  54. Rist F, Herzog K, Mack J, Richter R, Steinhage V, Töpfer R (2018) High-precision phenotyping of grape bunch architecture using fast 3D sensor and automation. Sensors 18(3):763CrossRefGoogle Scholar
  55. Sancenón V, Puig S, Mira H, Thiele DJ, Peñarrubia L (2003) Identification of a copper transporter family in Arabidopsis thaliana. Plant Mol Biol 51:577–587CrossRefGoogle Scholar
  56. Sarooshi R (1977) Some effects of girdling, gibberellic acid sprays, bunch thinning and trimming on the sultana. Austr J Exp Agric 17(87):700–704.  https://doi.org/10.1071/EA9770700 CrossRefGoogle Scholar
  57. Schneider CA, Rasband WS, Eliceiri KW (2012) NIH Image to ImageJ: 25 years of image analysis. Nat Methods 9(7):671–675.  https://doi.org/10.1038/nmeth.2089 CrossRefGoogle Scholar
  58. Shavrukov YN, Dry IB, Thomas MR (2004) Inflorescence and bunch architecture development in Vitis vinifera L. Aust J Grape Wine Res 10(2):116–124.  https://doi.org/10.1111/j.1755-0238.2004.tb00014.x CrossRefGoogle Scholar
  59. Shiri Y, Solouki M, Ebrahimie E, Emamjomeh A, Zahiri J (2018) Unraveling the transcriptional complexity of compactness in sistan grape cluster. Plant Sci 270:198–208CrossRefGoogle Scholar
  60. Smart R, Robinson M (1991) Sunlight into wine. A handbook for winegrape canopy management. Winetitles, AdelaideGoogle Scholar
  61. Strobl C, Boulesteix A-L, Zeileis A, Hothorn T (2007). Bias in random forest variable importance measures: illustrations, sources and a solution. BMC Bioinfo 8(25). http://www.biomedcentral.com/1471-2105/8/25
  62. Strobl C, Boulesteix A-L, Kneib T, Augustin T, Zeileis A (2008) Conditional variable importance for random forests. BMC Bioinforma 9(307). http://www.biomedcentral.com/1471-2105/9/307
  63. Tello J, Ibáñez J (2014) Evaluation of indexes for the quantitative and objective estimation of grapevine bunch compactness. Vitis 53(1):9–16Google Scholar
  64. Tello J, Ibáñez J (2017) What do we know about grapevine bunch compactness? A state-of-the-art review. Austr J Grape Wine Res.  https://doi.org/10.1111/ajgw.12310 Google Scholar
  65. Tello J, Aguirrezabal R, Hernaiz S, Larreina B, Montemayor MI, Vaquero E, Ibáñez J (2015) Multicultivar and multivariate study of the natural variation for grapevine bunch compactness. Austr J Grape Wine Res 21(2):277–289.  https://doi.org/10.1111/ajgw CrossRefGoogle Scholar
  66. Tello J, Torres-Perez R, Grimplet J, Ibanez J (2016) Association analysis of grapevine bunch traits using a comprehensive approach. Theor Appl Genet 129:227–242CrossRefGoogle Scholar
  67. The Gene Ontology Consortium (2017) Expansion of the gene ontology knowledgebase and resources. Nucleic Acids Res 45(Database issue):D331–D338.  https://doi.org/10.1093/nar/gkw1108 CrossRefGoogle Scholar
  68. Töpfer R, Hausmann L, Harst M, Maul E, Zyprian E, Eibach R (2011) New horizons for grapevine breeding. In: Flachowsky H, Hanke M-V (eds) Methods in temperate fruit breeding. Global Science Books Ltd, Ikenobe, pp 79–100Google Scholar
  69. Vail ME, Marois JJ (1991) Grape cluster architecture and the susceptibility of berries to Botrytis cinerea. Phytopath 81(2):188–191.  https://doi.org/10.1094/phyto-81-188 CrossRefGoogle Scholar
  70. van Buuren S, Groothuis-Oudshoorn K (2011) mice: Multivariate imputation by chained equations in R. J Stat Softw 45(3):1–67CrossRefGoogle Scholar
  71. van Ooijen J (2009) MapQTL 6, software for the mapping of quantitative trait loci in experimental populations of diploid species. Kyazma b. V, The NetherlandsGoogle Scholar
  72. Zyprian E, Ochssner I, Schwander F, Simon S, Hausmann L, Bonow-Rex M, Moreno-Sanz P, Grando MS, Wiedemann-Merdinoglu S, Merdinoglu D, Eibach R, Töpfer R (2016) Quantitative trait loci affecting pathogen resistance and ripening of grapevines. Mol Gen Genom 291(4):1573–1594.  https://doi.org/10.1007/s00438-016-1200-5 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute for Grapevine Breeding GeilweilerhofJulius Kuehn Institute, Federal Research Centre of Cultivated PlantsSiebeldingenGermany
  2. 2.Institute for Crop and Soil ScienceJulius Kuehn Institute, Federal Research Centre of Cultivated PlantsBrunswickGermany

Personalised recommendations