Theoretical and Applied Genetics

, Volume 132, Issue 4, pp 1089–1107 | Cite as

Characterisation of barley resistance to rhynchosporium on chromosome 6HS

  • Max Coulter
  • Bianca Büttner
  • Kerstin Hofmann
  • Micha Bayer
  • Luke Ramsay
  • Günther Schweizer
  • Robbie Waugh
  • Mark E. Looseley
  • Anna AvrovaEmail author
Original Article


Key message

Major resistance gene to rhynchosporium, Rrs18, maps close to the telomere on the short arm of chromosome 6H in barley.


Rhynchosporium or barley scald caused by a fungal pathogen Rhynchosporium commune is one of the most destructive and economically important diseases of barley in the world. Testing of Steptoe × Morex and CIho 3515 × Alexis doubled haploid populations has revealed a large effect QTL for resistance to R. commune close to the telomere on the short arm of chromosome 6H, present in both populations. Mapping markers flanking the QTL from both populations onto the 2017 Morex genome assembly revealed a rhynchosporium resistance locus independent of Rrs13 that we named Rrs18. The causal gene was fine mapped to an interval of 660 Kb using Steptoe × Morex backcross 1 S2 and S3 lines with molecular markers developed from Steptoe exome capture variant calling. Sequencing RNA from CIho 3515 and Alexis revealed that only 4 genes within the Rrs18 interval were transcribed in leaf tissue with a serine/threonine protein kinase being the most likely candidate for Rrs18.



This work was funded by the Scottish Food Security Alliance (SFSA) and the Bavarian State Ministry of Food, Agriculture and Forestry. MB, LR, RW, MEL and AA were supported by the Scottish Government Rural and Environment Science and Analytical Services (RESAS). AA and MB were also funded by the BBSRC-CIRC Project BB/J019569/1. KH was supported by the Federal Office of Agriculture and Food (BLE) under Grant No 28-1-41.009-06.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

122_2018_3262_MOESM1_ESM.xlsx (583 kb)
Supplementary material 1 (XLSX 583 kb)


  1. Abbott DC, Burdon JJ, Jarosz AM, Brown AHD, Muller WJ, Read BJ (1991) The relationship between seedling infection types and field reactions in Clipper barley backcross lines. Aust J Agric Res 42:801–809CrossRefGoogle Scholar
  2. Abbott DC, Lagudah ES, Brown AHD (1995) Identification of RFLPs flanking a scald resistance gene on barley chromosome 6. J Hered 86:152–154CrossRefGoogle Scholar
  3. Abramoff MD, Magalhães PJ, Ram SJ (2004) Image Processing with ImageJ. Biophotonics Int 11:36–42Google Scholar
  4. Avrova A, Knogge W (2012) Rhynchosporium commune: a persistent threat to barley cultivation. Mol Plant Pathol 13:986–997CrossRefGoogle Scholar
  5. Bates D, Maechler M, Bolker B, Walker S (2015) Fitting linear mixed-effects models using lme4. J Stat Softw 67:1–48CrossRefGoogle Scholar
  6. Bayer MM, Rapazote-Flores P, Ganal M, Hedley PE, Macaulay M, Plieske J, Ramsay L, Russell J, Shaw PD, Thomas W, Waugh R (2017) Development and evaluation of a Barley 50 k iSelect SNP array. Front Plant Sci. Google Scholar
  7. Behn A, Hartl L, Schweizer G, Wenzel G, Baumer M (2004) QTL mapping for resistance against non-parasitic leaf spots in a spring barley doubled haploid population. Theor Appl Genet 108:1229–1235CrossRefGoogle Scholar
  8. Bjørnstad A, Patil V, Tekauz A, Maroy AG, Skinnes H, Jensen A, Magnus H, MacKey J (2002) Resistance to scald (Rhynchosporium secalis) in barley (Hordeum vulgare) studied by near-isogenic lines: I. Markers differential isolates. Phytopathology 92:710–720CrossRefGoogle Scholar
  9. Broman KW, Wu H, Sen S, Churchill GA (2003) R/qtl: QTL mapping in experimental crosses. Bioinformatics (Oxford, England) 19:889–890CrossRefGoogle Scholar
  10. Cheong J, Williams K, Wallwork H (2006) The identification of QTLs for adult plant resistance to leaf scald in barley. Aust J Agric Res 57:961–965CrossRefGoogle Scholar
  11. Cingolani P, Platts A, Wang LL, Coon M, Tung N, Wang L, Land SJ, Lu X, Ruden DM (2012) A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w(1118); iso-2; iso-3. Fly 6:80–92. CrossRefGoogle Scholar
  12. Close TJ, Bhat PR, Lonardi S, Wu Y, Rostoks N, Ramsay L, Druka A, Stein N, Svensson J, Wanamaker S, Bozdag S, Roose M, Moscou M, Chao S, Varshney R, Szucs P, Sato K, Hayes P, Matthews D, Kleinhofs A, Muehlbauer G, DeYoung J, Marshall D, Madishetty K, Fenton R, Condamine P, Graner A, Waugh R (2009) Development and implementation of high-throughput SNP genotyping in barley. BMC Genom 10:582–594CrossRefGoogle Scholar
  13. Dahleen LS (2006) Coordinator’s report: chromosome 7H. Barley Genet Newslett 36:63–65Google Scholar
  14. Davis H, Fitt BD (1990) Symptomless infection of Rhynchosporium secalis on leaves of winter barley. Mycol Res 94:557–560CrossRefGoogle Scholar
  15. Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, Batut P, Chaisson M, Gingeras TR (2013) STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29:15–21. CrossRefGoogle Scholar
  16. Druka A, Druka I, Centeno AG, Li H, Sun Z, Thomas WTB, Bonar N, Steffenson BJ, Ullrich SE, Kleinhofs A, Wise RP, Close TJ, Potokina E, Luo Z, Wagner C, Schweizer GF, Marshall DF, Kearsey MJ, Williams RW, Waugh R (2008) Towards systems genetic analyses in barley: integration of phenotypic, expression and genotype data into GeneNetwork. BMC Genet 9:73–83CrossRefGoogle Scholar
  17. Genger RK, Brown AHD, Knogge W, Nesbitt K, Burdon JJ (2003) Development of SCAR markers linked to a scald resistance gene derived from wild barley. Euphytica 134:149–159CrossRefGoogle Scholar
  18. Glazebrook J (2005) Contrasting mechanisms of defense against biotrophic and necrotrophic pathogens. Ann Rev Phytopathol 43:205–227CrossRefGoogle Scholar
  19. Grønnerød S, Marøy AG, MacKey J, Tekauz A, Penner GA, Bjørnstad A (2002) Genetic analysis of resistance to barley scald (Rhynchosporium secalis) in the Ethiopian line ‘Abyssinian’ (CI668). Euphytica. 126:235–250CrossRefGoogle Scholar
  20. Habgood MR, Hayes JD (1971) The inheritance of resistance to Rhynchosporium secalis in barley. Heredity 27:25–37CrossRefGoogle Scholar
  21. Hanemann A, Schweizer GF, Cossu R, Wicker T, Röder MS (2009) Fine mapping, physical mapping and development of diagnostic markers for the Rrs2 scald resistance gene in barley. Theor Appl Genet 119:1507–1522CrossRefGoogle Scholar
  22. Hofmann K, Silvar C, Casas AM, Herz M, Büttner B, Gracia MP, Contreras-Moreira B, Wallwork H, Igartua E, Schweizer G (2013) Fine mapping of the Rrs1 resistance locus against scald in two large populations derived from Spanish barley landraces. Theor Appl Genet 126:3091–3102CrossRefGoogle Scholar
  23. IBSC International Barley Genome Sequencing Consortium (2012) A physical, genetic and functional sequence assembly of the barley genome. Nature 491:711–716CrossRefGoogle Scholar
  24. Jackson LF, Webster RK (1976) Race differentiation, distribution, and frequency of Rhynchosporium secalis in California. Phytopathology 66:719–725CrossRefGoogle Scholar
  25. Jenkins JEE, Jemmett JL (1967) Barley leaf blotch. NAAS Q Rev 75:127–132Google Scholar
  26. Jensen J, Backes G, Skinnes H, Giese H (2002) Quantitative trait loci for scald resistance in barley localized by a non-interval mapping procedure. Plant Breed 121:124–128CrossRefGoogle Scholar
  27. Jones P, Ayres PG (1974) Rhynchosporium leaf blotch of barley studied during the subcuticular phase by electron microscopy. Physiol Plant Pathol 4:229–233CrossRefGoogle Scholar
  28. Kleinhofs A, Kilian A, Saghai Maroof MA, Biyashev RM, Hayes P, Chen FQ, Lapitan N, Fenwick A, Blake TK, Kanazin V, Ananiev E, Dahleen L, Kudrna D, Bollinger J, Knapp SJ, Liu B, Sorrells M, Heun M, Franckowiak JD, Hoffman D, Skadsen R, Steffenson BJ (1993) A molecular, isozyme and morphological map of the barley (Hordeum vulgare) genome. Theor Appl Genet 86:705–712CrossRefGoogle Scholar
  29. Kuznetsova A, Brockhoff PB, Christensen RHB (2017) lmerTest package: tests in linear mixed effects models. J Stat Softw 82:1–26CrossRefGoogle Scholar
  30. Larkan NJ, Lydiate DJ, Parkin IAP, Nelson MN, Epp DJ, Cowling WA, Rimmer SR, Borhan MH (2013) The Brassica napus blackleg resistance gene LepR3 encodes a receptor-like protein triggered by the Leptosphaeria maculans effector AVRLM1. New Phytol 197:595–605CrossRefGoogle Scholar
  31. Lehnackers H, Knogge W (1990) Cytological studies on the infection of barley cultivars with known resistance genotypes by Rhynchosporium secalis. Can J Bot 68:1953–1961CrossRefGoogle Scholar
  32. Li H, Durbin R (2009) Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25:1754–1760CrossRefGoogle Scholar
  33. Li J, Ji L (2005) Adjusting multiple testing in multilocus analyses using the eigenvalues of a correlation matrix. Heredity 95:221–227CrossRefGoogle Scholar
  34. Li JZ, Sjakste TG, Röder MS, Ganal MW (2003) Development and genetic mapping of 127 new microsatellite markers in barley. Theor Appl Genet 107:1021–1927CrossRefGoogle Scholar
  35. Liebrand TWH, van den Berg GCM, Zhang Z, Smit P, Cordewener JHG, America AHP, Sklenar J, Jones AME, Tameling WIL, Robatzek S, Thomma BPHJ, Joosten MHAJ (2013) Receptor-like kinase SOBIR1/EVR interacts with receptor-like proteins in plant immunity against fungal infection. Proc Natl Acad Sci USA 110:10010–10015CrossRefGoogle Scholar
  36. Looseley ME, Griffe LL, Büttner B, Wright KM, Middlefell-Williams J, Bull H, Shaw PD, Macaulay M, Booth A, Schweizer G, Russell JR, Waugh R, Thomas WTB, Avrova A (2018) Resistance to Rhynchosporium commune in a collection of European spring barley germplasm. Theor Appl Genet 55:55. Google Scholar
  37. Marzin S, Hanemann A, Sharma S, Hensel G, Kumlehn J, Schweizer G, Röder MS (2016) Are PECTIN ESTERASE INHIBITOR genes involved in mediating resistance to Rhynchosporium commune in barley? PLoS ONE 11:e0150485CrossRefGoogle Scholar
  38. Mascher M, Richmond TA, Stein N (2013) Barley whole exome capture: a tool for genomic research in the genus Hordeum and beyond. Plant J 76:494–505CrossRefGoogle Scholar
  39. Mascher M, Gundlach H, Himmelbach A, Beier S, Twardziok SO, Wicker T, Radchuk V, Dockter C, Hedley PE, Russell J, Bayer M, Ramsay L, Liu H, Haberer G, Zhang X-Q, Zhang Q, Barrero RA, Li L, Taudien S, Groth M, Felder M, Hastie A, Šimková H, Staňková H, Vrána J, Chan S, Muñoz-Amatriaín M, Ounit R, Wanamaker S, Bolser D, Colmsee C, Schmutzer T, Aliyeva-Schnorr L, Grasso S, Tanskanen J, Chailyan A, Sampath D, Heavens D, Clissold L, Cao S, Chapman B, Dai F, Han Y, Li H, Li X, Lin C, McCooke JK, Tan C, Wang P, Wang S, Yin S, Zhou G, Poland JA, Bellgard MI, Borisjuk L, Houben A, Doležel J, Ayling S, Lonardi S, Kersey P, Langridge P, Muehlbauer GJ, Clark MD, Caccamo M, Schulman AH, Mayer KFX, Platzer M, Close TJ, Scholz U, Hansson M, Zhang G, Braumann I, Spannagl M, Li C, Waugh R, Stein N (2017) A chromosome conformation capture ordered sequence of the barley genome. Nature 544:427–443CrossRefGoogle Scholar
  40. Maucher H, Hause B, Feussner I, Ziegler J, Wasternack C (2000) Allene oxide synthases of barley (Hordeum vulgare cv. Salome): tissue specific regulation in seedling development. Plant J 21:199–213CrossRefGoogle Scholar
  41. Mayer KFX, Martis M, Hedley PE, Šimková H, Liu H, Morris JA, Steuernagel B, Taudien S, Roessner S, Gundlach H, Kubaláková M, Suchánková P, Murat F, Felder M, Nussbaumer T, Graner A, Salse J, Endo T, Sakai H, Tanaka T, Itoh T, Sato K, Platzer M, Matsumoto T, Scholz U, Doležel J, Waugh R, Stein N (2011) Unlocking the barley genome by chromosomal and comparative genomics. Plant Cell 23:1249–1263CrossRefGoogle Scholar
  42. Mckenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, Garimella K, Altshuler D, Gabriel S, Daly M, Depristo MA (2010) The genome analysis toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res 20:1297–1303CrossRefGoogle Scholar
  43. Milne I, Bayer M, Cardle L, Shaw P, Stephen G, Wright F, Marshall D (2010a) Tablet—next generation sequence assembly visualization. Bioinformatics 26:401–402CrossRefGoogle Scholar
  44. Milne I, Shaw P, Marshall D (2010b) Flapjack—graphical genotype visualization. Bioinformatics 26:3133–3134CrossRefGoogle Scholar
  45. Milne I, Stephen G, Bayer M, Cock PJA, Pritchard L, Cardle L, Shaw PD, Marshall D (2013) Using Tablet for visual exploration of second-generation sequencing data. Brief Bioinform 14:193–202CrossRefGoogle Scholar
  46. Molendijk AJ, Ruperti B, Singh MK, Dovzhenko A, Ditengou FA, Milia M, Westphal L, Rosahl S, Soellick T-R, Uhrig J, Weingarten L, Huber M, Palme K (2008) A cysteine-rich receptor-like kinase NCRK and a pathogeninduced protein kinase RBK1 are Rop GTPase interactors. Plant J 53:909–923CrossRefGoogle Scholar
  47. Newton AC (1989) Somatic recombination in Rhynchosporium secalis. Plant Pathol 38:71–74CrossRefGoogle Scholar
  48. Newton AC, Searle J, Guy DC, Hackett CA, Cooke DEL (2001) Variability in pathotype, aggressiveness, RAPD profile, and rDNA ITS1 sequences of UK isolates of Rhynchosporium secalis. Zeitschrift fur Pflanzenkrankheiten und Pflanzenschutz-J Plant Dis Prot 108:446–458Google Scholar
  49. Oxley SJP, Cooke LR, Black L, Hunter A, Mercer PC (2003) Management of Rhynchosporium in different barley varieties and cropping systems. Home-Grown Cereals Authority, Project Report 315, LondonGoogle Scholar
  50. Patil V, Bjørnstad Å, Mackey J (2003) Molecular mapping of a new gene Rrs4 CI 11549 for resistance to barley scald (Rhynchosporium secalis). Mol Breed 12:169–183CrossRefGoogle Scholar
  51. Penner GA, Tekauz A, Reimer E, Scoles GJ, Rossnagel BG, Eckstein PE, Legge WG, Burnett PA, Ferguson T, Helm JF (1995) The genetic basis of scald resistance in western Canadian barley cultivars. Euphytica 92:367–374CrossRefGoogle Scholar
  52. Phillips D, Jenkins G, Ramsay L (2015) The effect of temperature on the male and female recombination landscape of barley. New Phytol 208:241–249CrossRefGoogle Scholar
  53. R Core Team (2012) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URL
  54. Ramsay L, Macaulay M, Ivanissevich SD, MacLean K, Cardle L, Fuller J, Edwards KJ, Tuvesson S, Morgante M, Massari A, Maestri E, Marmiroli N, Sjakste T, Ganal M, Powell W, Waugh R (2000) A simple sequence repeat-based linkage map of barley. Genetics 156:1997–2005Google Scholar
  55. Ribeiro A, Golicz A, Hackett CA, Milne I, Stephen G, Marshall D, Flavell AJ, Bayer M (2015) An investigation of causes of false positive single nucleotide polymorphisms using simulated reads from a small eukaryote genome. BMC Bioinform 16:382–397CrossRefGoogle Scholar
  56. Rohe M, Searle J, Newton AC, Knogge W (1996) Transformation of the plant pathogenic fungus, Rhynchosporium secalis. Curr Genet 29:587–590CrossRefGoogle Scholar
  57. Rostoks N, Mudie S, Cardle L, Russell J, Ramsay L, Booth A, Svensson JT, Wanamaker SI, Walia H, Rodriguez EM, Hedley PE, Liu H, Morris J, Close TJ, Marshall DF, Waugh R (2005) Genome-wide SNP discovery and linkage analysis in barley based on genes responsive to abiotic stress. Mol Genet Genomics 274:515–527CrossRefGoogle Scholar
  58. Russell J, Mascher M, Dawson IK, Kyriakidis S, Calixto C, Freund F, Bayer M, Milne I, Marshall-Griffiths T, Heinen S, Hofstad A, Sharma R, Himmelbach A, Knauft M, Van Zonneveld M, Brown JWS, Schmid K, Kilian B, Muehlbauer GJ, Stein N, Waugh R (2016) Exome sequencing of geographically diverse barley landraces and wild relatives gives insights into environmental adaptation. Nat Genet 48:1024–1030. CrossRefGoogle Scholar
  59. Saintenac C, Lee WS, Cambon F, Rudd JJ, King RC, Marande W, Powers SJ, Bergès H, Phillips AL, Uauy C, Hammond-Kosack KE, Langin T, Kanyuka K (2018) Wheat receptor kinase-like protein Stb6 controls gene-for-gene resistance to fungal pathogen Zymoseptoria tritici. Nat Genet. Google Scholar
  60. Schweizer GF, Baumer M, Daniel G, Rugel H, Röder MS (1995) RFLP markers linked to scald (Rhynchosporium secalis) resistance gene Rh2 in barley. Theor Appl Genet 90:920–924CrossRefGoogle Scholar
  61. Shipton WA, Boyd WJR, Ali SM (1974) Scald of barley. Rev Plant Pathol 53:839–861Google Scholar
  62. Shtaya MJY, Marcel TC, Sillero JC, Niks RE, Rubiales D (2006) Identification of QTLs for powdery mildew and scald resistance in barley. Euphytica 151:421–429CrossRefGoogle Scholar
  63. Silvar C, Casas AM, Igartua E, Ponce-Molina LJ, Gracia MP, Schweizer G, Herz M, Flath K, Waugh R, Kopahnke D, Ordon F (2011) Resistance to powdery mildew in Spanish barley landraces is controlled by different sets of quantitative trait loci. Theor Appl Genet 123:1019–1028CrossRefGoogle Scholar
  64. Starling TM, Roane CW, Chi KR (1971) Inheritance of reaction to Rhynchosporium secalis in winter barley cultivars. In: Proceedings of 2nd international barley genetics symposium, Pullman, WA, pp 513–519Google Scholar
  65. Stein N, Prasad M, Scholz U, Thiel T, Zhang H, Wolf M, Kota R, Varshney RK, Perovic D, Grosse I, Graner A (2007) A 1,000-loci transcript map of the barley genome: new anchoring points for integrative grass genomics. Theor Appl Genet 114:823–839CrossRefGoogle Scholar
  66. Stotz H, Mitrousia G, de Wit P, Fitt BDL (2014) Effector-triggered defence against apoplastic fungal pathogens. Trends Plant Sci 19:491–500. CrossRefGoogle Scholar
  67. Thiel T, Kota R, Grosse I, Stein N, Graner A (2004) SNP2CAPS: a SNP and INDEL analysis tool for CAPS marker development. Nucleic Acids Res 32:e5CrossRefGoogle Scholar
  68. Thirugnanasambandam A, Wright KM, Atkins SD, Whisson SC, Newton AC (2011) Infection of Rrs1 barley by an incompatible race of the fungus Rhynchosporium secalis expressing the green fluorescent protein. Plant Pathol 60:513–521CrossRefGoogle Scholar
  69. Van Der Auwera GA, Carneiro MO, Hartl C, Poplin R, Del Angel G, Levy-Moonshine A, Jordan T, Shakir K, Roazen D, Thibault J, Banks E, Garimella KV, Altshuler D, Gabriel S, Depristo MA (2013) From FastQ data to high confidence variant calls: the Genome Analysis Toolkit best practices pipeline. Curr Protocols Bioinform 43:11–33Google Scholar
  70. Varshney RK, Mahendar T, Aggarwal RK, Börner A (2007) Genic molecular markers in plants: development and applications. In: Varshney RK, Tuberosa R (eds) Genomics-assisted crop improvement. Springer, DordrechtGoogle Scholar
  71. Vinatzer BA, Patocchi A, Gianfranceschi L, Tartarini S, Zhang HB, Gessler C, Sansavini S (2001) Apple contains receptor-like genes homologous to the Cladosporium fulvum resistance gene family of tomato with a cluster of genes cosegregating with Vf apple scab resistance. Mol Plant Microbe Interact 14:508–515CrossRefGoogle Scholar
  72. VSN International (2014) GenStat for Windows, 17th edn. VSN International, Hemel Hempstead, UKGoogle Scholar
  73. Wagner C, Schweizer G, Krämer M, Dehmer-Badani AG, Ordon F, Friedt W (2008) The complex quantitative barley-Rhynchosporium secalis interaction: newly identified QTL may represent already known resistance genes. Theor Appl Genet 118:113–122CrossRefGoogle Scholar
  74. Wang Y, Gupta S, Wallwork H, Zhang X-Q, Zhou G, Broughton S, Loughman R, Lance R, Wu D, Shu X, Li C (2014) Combination of seedling and adult plant resistance to leaf scald for stable resistance in barley. Mol Breed 34:2081–2089CrossRefGoogle Scholar
  75. Xi K, Burnett PA, Tewari JP, Chen MH, Turkington TK, Helm JH (2000) Histopathological study of barley cultivars resistant and susceptible to Rhynchosporium secalis. Phytopathology 90:94–102CrossRefGoogle Scholar
  76. Xu M, Korban SS (2002) A cluster of four receptor-like genes resides in the Vf locus that confers resistance to apple scab disease. Genetics 162:1995–2006Google Scholar
  77. Zhan J, Fitt BDL, Pinnschmidt HO, Oxley SJP, Newton AC (2008) Resistance, epidemiology and sustainable management of Rhynchosporium secalis populations on barley. Plant Pathol 57:1–14Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.The James Hutton InstituteInvergowrie, DundeeScotland, UK
  2. 2.Institute for Crop Science and Plant BreedingBavarian State Research Center for AgricultureFreisingGermany

Personalised recommendations