Advertisement

Theoretical and Applied Genetics

, Volume 132, Issue 2, pp 473–488 | Cite as

An evolutionarily conserved non-synonymous SNP in a leucine-rich repeat domain determines anthracnose resistance in watermelon

  • Yoon Jeong Jang
  • Minseok Seo
  • Craig P. Hersh
  • Sun-Ju Rhee
  • Yongjae Kim
  • Gung Pyo LeeEmail author
Original Article
  • 175 Downloads

Abstract

Key message

A non-synonymous SNP of CC–NBS–LRR was firstly mapped to confer resistance to anthracnose in watermelon. Newly proposed LRR domain harboring the SNP is evolutionary conserved in the Cucurbitaceae and Fabaceae.

Abstract

Anthracnose disease caused by Colletotrichum devastates many plants. Despite the importance of the disease, the mechanisms of resistance against it are poorly understood. Here, we identified a non-synonymous single-nucleotide polymorphism (SNP) located in a leucine-rich repeat domain as a marker for resistance to anthracnose race 1 in watermelon, using a combination of genetic analyses. We validated this SNP in segregating populations and 59 watermelon accessions using high-resolution melting assays and Sanger sequencing. We demonstrated that the resulting arginine-to-lysine substitution is particularly conserved among the Cucurbitaceae and Fabaceae. We identified a conserved motif, IxxLPxSxxxLYNLQTLxL, found in 1007 orthologues/paralogues from 89 plant species, and discovered that residue 18 of this motif could determine resistance to disease caused by external invaders. This study provides a step forward in understanding anthracnose resistance in watermelon, as well as functional and evolutionary insight into leucine-rich repeat proteins.

Notes

Acknowledgements

This work was supported by the Golden Seed Project (213006051SBV20); the Ministry of Agriculture, Food, and Rural Affairs (MAFRA); the Ministry of Oceans and Fisheries (MOF); the Rural Development Administration (RDA); and the Korean Forest Service (KFS) of the Republic of Korea.

Compliance with ethical standards

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Data accessibility

The datasets generated for this study are available in the NCBI SRA accession SRP150693.

Supplementary material

122_2018_3235_MOESM1_ESM.pdf (3.3 mb)
Supplementary material 1 (PDF 3356 kb)
122_2018_3235_MOESM2_ESM.xlsx (63 kb)
Supplementary material 2 (XLSX 63 kb)

References

  1. Ade J, DeYoung BJ, Golstein C, Innes RW (2007) Indirect activation of a plant nucleotide binding site–leucine-rich repeat protein by a bacterial protease. Proc Natl Acad Sci USA 104:2531–2536CrossRefGoogle Scholar
  2. Akashi K, Morikawa K, Yokota A (2005) Agrobacterium-mediated transformation system for the drought and excess light stress-tolerant wild watermelon (Citrullus lanatus). Plant Biotechnol 22:13–18CrossRefGoogle Scholar
  3. Ameline-Torregrosa C, Cazaux M, Danesh D, Chardon F, Cannon SB, Esquerré-Tugayé M-T, Dumas B, Young ND, Samac DA, Huguet T (2008) Genetic dissection of resistance to anthracnose and powdery mildew in Medicago truncatula. Mol Plant Microbe Interact 21:61–69CrossRefGoogle Scholar
  4. Ashfield T, Egan AN, Pfeil BE, Chen NW, Podicheti R, Ratnaparkhe MB, Ameline-Torregrosa C, Denny R, Cannon S, Doyle JJ (2012) Evolution of a complex disease resistance gene cluster in diploid Phaseolus and tetraploid Glycine. Plant Physiol 159:336–354CrossRefGoogle Scholar
  5. Ausubel FM (2005) Are innate immune signaling pathways in plants and animals conserved? Nat Immunol 6:973CrossRefGoogle Scholar
  6. Bendahmane A, Farnham G, Moffett P, Baulcombe DC (2002) Constitutive gain-of-function mutants in a nucleotide binding site–leucine rich repeat protein encoded at the Rx locus of potato. Plant J 32:195–204CrossRefGoogle Scholar
  7. Biruma M, Martin T, Fridborg I, Okori P, Dixelius C (2012) Two loci in sorghum with NB-LRR encoding genes confer resistance to Colletotrichum sublineolum. Theor Appl Genet 124:1005–1015CrossRefGoogle Scholar
  8. Bolger AM, Lohse M, Usadel B (2014) Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30:2114–2120CrossRefGoogle Scholar
  9. Boyhan G, Norton J, Abrahams B, Wen H (1994) A new source of resistance to anthracnose (Race 2) in watermelon. Hortscience 29:111–112Google Scholar
  10. Cannon P, Damm U, Johnston P, Weir B (2012) Colletotrichum–current status and future directions. Stud Mycol 73:181–213CrossRefGoogle Scholar
  11. Chen M, Wu J, Wang L, Mantri N, Zhang X, Zhu Z, Wang S (2017) Mapping and genetic structure analysis of the anthracnose resistance locus Co-1HY in the common bean (Phaseolus vulgaris L.). PLoS ONE 12:e0169954CrossRefGoogle Scholar
  12. Dangl JL, Jones JD (2001) Plant pathogens and integrated defence responses to infection. Nature 411:826CrossRefGoogle Scholar
  13. Dean R, Van Kan JA, Pretorius ZA, Hammond-Kosack KE, Di Pietro A, Spanu PD, Rudd JJ, Dickman M, Kahmann R, Ellis J (2012) The Top 10 fungal pathogens in molecular plant pathology. Mol Plant Pathol 13:414–430CrossRefGoogle Scholar
  14. Desper R, Gascuel O (2004) Theoretical foundation of the balanced minimum evolution method of phylogenetic inference and its relationship to weighted least-squares tree fitting. Mol Biol Evol 21:587–598CrossRefGoogle Scholar
  15. Diniz I, Azinheira H, Figueiredo A, Guichuru E, Oliveira H, Guerra-Guimarães L, Silva MC (2018) Fungal penetration associated with recognition, signaling and defence-related genes and peroxidase activity during the resistance response of coffee to Colletotrichum kahawae. Physiol Mol Plant Pathol.  https://doi.org/10.1016/j.pmpp.2017.12.005
  16. Dunning FM, Sun W, Jansen KL, Helft L, Bent AF (2007) Identification and mutational analysis of Arabidopsis FLS2 leucine-rich repeat domain residues that contribute to flagellin perception. Plant Cell 19:3297–3313CrossRefGoogle Scholar
  17. Edgar RC (2010) Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26:2460–2461CrossRefGoogle Scholar
  18. Elshire RJ, Glaubitz JC, Sun Q, Poland JA, Kawamoto K, Buckler ES, Mitchell SE (2011) A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species. PLoS ONE 6:e19379CrossRefGoogle Scholar
  19. FehÉR T (1993) Watermelon: Citrullus lanatus (Thunb.) Matsum. & Nakai. In: Kalloo G, Bergh BO (eds) Genetic improvement of vegetable crops. Pergamon, Amsterdam, pp 295–311CrossRefGoogle Scholar
  20. Felderhoff T, McIntyre L, Saballos A, Vermerris W (2016) Using genotyping by sequencing to map two novel anthracnose resistance loci in sorghum bicolor. G3 116.030510 76:1935CrossRefGoogle Scholar
  21. Gan P, Ikeda K, Irieda H, Narusaka M, O’Connell RJ, Narusaka Y, Takano Y, Kubo Y, Shirasu K (2013) Comparative genomic and transcriptomic analyses reveal the hemibiotrophic stage shift of Colletotrichum fungi. New Phytol 197:1236–1249CrossRefGoogle Scholar
  22. Gan P, Narusaka M, Kumakura N, Tsushima A, Takano Y, Narusaka Y, Shirasu K (2016) Genus-wide comparative genome analyses of Colletotrichum species reveal specific gene family losses and gains during adaptation to specific infection lifestyles. Genome Biol Evol 8:1467–1481CrossRefGoogle Scholar
  23. Goode MJ (1958) Physiological specialization in Colletotrichum lagenarium. Phytopathology 48:79–83Google Scholar
  24. Guo S, Zhang J, Sun H, Salse J, Lucas WJ, Zhang H, Zheng Y, Mao L, Ren Y, Wang Z (2013) The draft genome of watermelon (Citrullus lanatus) and resequencing of 20 diverse accessions. Nat Genet 45:51–58CrossRefGoogle Scholar
  25. Haldane J (1919) The combination of linkage values and the calculation of distances between the loci of linked factors. J Genet 8:299–309CrossRefGoogle Scholar
  26. Halterman DA, Wise RP (2004) A single-amino acid substitution in the sixth leucine-rich repeat of barley MLA6 and MLA13 alleviates dependence on RAR1 for disease resistance signaling. Plant J 38:215–226CrossRefGoogle Scholar
  27. Han B, Rhee S, Jang Y, Sim T, Kim Y, Park T, Lee G (2016) Identification of a causal pathogen of watermelon powdery mildew in Korea and development of a genetic linkage marker for resistance in watermelon (Citrullus lanatus). Korean J Hortic Sci Technol 34:912–923Google Scholar
  28. Jacob F, Vernaldi S, Maekawa T (2013) Evolution and conservation of plant NLR functions. Front Immunol 4:297CrossRefGoogle Scholar
  29. Jones JD, Dangl JL (2006) The plant immune system. Nature 444:323CrossRefGoogle Scholar
  30. Jones DA, Jones JD (1997) The role of leucine-rich repeat proteins in plant defences. Advances in botanical research. Elsevier, London, pp 89–167Google Scholar
  31. Jones JD, Vance RE, Dangl JL (2016) Intracellular innate immune surveillance devices in plants and animals. Science 354:aaf6395CrossRefGoogle Scholar
  32. Katoh K, Standley DM (2013) MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol 30:772–780CrossRefGoogle Scholar
  33. Kelley LA, Mezulis S, Yates CM, Wass MN, Sternberg MJ (2015) The Phyre2 web portal for protein modeling, prediction and analysis. Nature Protoc 10:845CrossRefGoogle Scholar
  34. Kobe B, Kajava AV (2001) The leucine-rich repeat as a protein recognition motif. Curr Opin Struct Biol 11:725–732CrossRefGoogle Scholar
  35. Letunic I, Bork P (2006) Interactive tree of life (iTOL): an online tool for phylogenetic tree display and annotation. Bioinformatics 23:127–128CrossRefGoogle Scholar
  36. Li H, Durbin R (2009) Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics 25:1754–1760CrossRefGoogle Scholar
  37. López CE, Acosta IF, Jara C, Pedraza F, Gaitán-Solís E, Gallego G, Beebe S, Tohme J (2003) Identifying resistance gene analogs associated with resistances to different pathogens in common bean. Phytopathology 93:88–95CrossRefGoogle Scholar
  38. Mansfeld BN, Grumet R (2018) QTLseqr: an R package for bulk segregant analysis with next-generation sequencing. BioRxiv:208140Google Scholar
  39. Matsushima N, Tachi N, Kuroki Y, Enkhbayar P, Osaki M, Kamiya M, Kretsinger R (2005) Structural analysis of leucine-rich-repeat variants in proteins associated with human diseases. Cell Mol Life Sci 62:2771–2791CrossRefGoogle Scholar
  40. McHale L, Tan X, Koehl P, Michelmore RW (2006) Plant NBS–LRR proteins: adaptable guards. Genome Biol 7:212CrossRefGoogle Scholar
  41. McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, Garimella K, Altshuler D, Gabriel S, Daly M (2010) The genome analysis toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res 20:1297–1303CrossRefGoogle Scholar
  42. Miranda V, Porto WF, Fernandes G, Pogue R, Nolasco DO, Araujo ACG, Cota LV, Freitas C, Dias SC, Franco OL (2017) Comparative transcriptomic analysis indicates genes associated with local and systemic resistance to Colletotrichum graminicola in maize. Sci Rep 7:248CrossRefGoogle Scholar
  43. Narusaka M, Shirasu K, Noutoshi Y, Kubo Y, Shiraishi T, Iwabuchi M, Narusaka Y (2009) RRS1 and RPS4 provide a dual Resistance-gene system against fungal and bacterial pathogens. Plant J 60:218–226CrossRefGoogle Scholar
  44. Ng A, Xavier RJ (2011) Leucine-rich repeat (LRR) proteins: integrators of pattern recognition and signaling in immunity. Autophagy 7:1082–1084CrossRefGoogle Scholar
  45. Oblessuc PR, Baroni RM, da Silva PG, Chiorato AF, Carbonell SAM, Briñez B, Luciano Da Costa ES, Garcia AAF, Camargo LEA, Kelly JD (2014) Quantitative analysis of race-specific resistance to Colletotrichum lindemuthianum in common bean. Mol Breed 34:1313–1329CrossRefGoogle Scholar
  46. O’Connell RJ, Thon MR, Hacquard S et al (2012) Lifestyle transitions in plant pathogenic Colletotrichum fungi deciphered by genome and transcriptome analyses. Nat Genet 44:1060–1065CrossRefGoogle Scholar
  47. Pan J, Tan J, Wang Y, Zheng X, Owens K, Li D, Li Y, Weng Y (2018) STAYGREEN (CsSGR) is a candidate for the anthracnose (Colletotrichum orbiculare) resistance locus cla in Gy14 cucumber. Theor App Genet 131:1577–1587CrossRefGoogle Scholar
  48. Papadopoulos JS, Agarwala R (2007) COBALT: constraint-based alignment tool for multiple protein sequences. Bioinformatics 23:1073–1079CrossRefGoogle Scholar
  49. Paris HS, Daunay M-C, Janick J (2013) Medieval iconography of watermelons in Mediterranean Europe. Ann Bot 112:867–879CrossRefGoogle Scholar
  50. Perfect SE, Hughes HB, O’Connell RJ, Green JR (1999) Colletotrichum: a model genus for studies on pathology and fungal–plant interactions. Fungal Genet Biol 27:186–198CrossRefGoogle Scholar
  51. Rhee S-J, Seo M, Jang Y-J, Cho S, Lee GP (2015) Transcriptome profiling of differentially expressed genes in floral buds and flowers of male sterile and fertile lines in watermelon. BMC Genomics 16:914CrossRefGoogle Scholar
  52. Rhee S-J, Kwon T, Seo M, Jang YJ, Sim TY, Cho S, Han S-W, Lee GP (2017) De novo-based transcriptome profiling of male-sterile and fertile watermelon lines. PLoS ONE 12:e0187147CrossRefGoogle Scholar
  53. Richard M, Gratias A, Thareau V, Kim KD, Balzergue S, Joets J, Jackson SA, Geffroy V (2018) Genomic and epigenomic immunity in common bean: the unusual features of NB-LRR gene family. DNA Res 25:161–172CrossRefGoogle Scholar
  54. Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425Google Scholar
  55. Saranya G, Nath VS, Jeeva M, Sheela M, Makeshkumar T (2017) Mining of resistance gene analogues for anthracnose disease in greater yam (Dioscorea alata L.). J Root Crops 42:115–120Google Scholar
  56. Shen Q-H, Zhou F, Bieri S, Haizel T, Shirasu K, Schulze-Lefert P (2003) Recognition specificity and RAR1/SGT1 dependence in barley Mla disease resistance genes to the powdery mildew fungus. Plant Cell 15:732–744CrossRefGoogle Scholar
  57. Van Ooijen J (2006) JoinMap 4. Software for the calculation of genetic linkage maps in experimental populations, vol 33. Kyazma BV, WageningenGoogle Scholar
  58. Wang S, Basten C, Zeng Z (2005) Windows QTL cartographer version 2.5. Statistical genetics North. Carolina State University, RaleighGoogle Scholar
  59. Wang L, Wang Y, Cao H, Hao X, Zeng J, Yang Y, Wang X (2016) Transcriptome analysis of an anthracnose-resistant tea plant cultivar reveals genes associated with resistance to Colletotrichum camelliae. PLoS ONE 11:e0148535CrossRefGoogle Scholar
  60. Warren RF, Henk A, Mowery P, Holub E, Innes RW (1998) A mutation within the leucine-rich repeat domain of the Arabidopsis disease resistance gene RPS5 partially suppresses multiple bacterial and downy mildew resistance genes. Plant Cell 10:1439–1452CrossRefGoogle Scholar
  61. Wasilwa LA, Correll JC, Morelock TE, Mcnew RE (1993) Reexamination of races of the cucurbit anthracnose pathogen Colletotrichum–Orbiculare. Phytopathology 83:1190–1198CrossRefGoogle Scholar
  62. Wu J, Zhu J, Wang L, Wang S (2017) Genome-wide association study identifies NBS–LRR-encoding genes related with anthracnose and common bacterial blight in the common bean. Front Plant Sci 8:1398CrossRefGoogle Scholar
  63. Yong X, Guo S (2016) The watermelon genome. In: Grumet R, Katzir N, Garcia-Mas J (eds) Genetics and genomics of cucurbitaceae. Plant genetics and genomics: crops and models, vol 20. Springer, ChamGoogle Scholar
  64. You M, Boersma JG, Buirchell BJ, Sweetingham MW, Siddique KH, Yang H (2005) A PCR-based molecular marker applicable for marker-assisted selection for anthracnose disease resistance in lupin breeding. Cell Mol Biol Lett 10:123–134Google Scholar
  65. Zuiderveen GH, Padder BA, Kamfwa K, Song Q, Kelly JD (2016) Genome-wide association study of anthracnose resistance in Andean beans (Phaseolus vulgaris). PLoS ONE 11:e0156391CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Integrative Plant ScienceChung-Ang UniversityAnseongRepublic of Korea
  2. 2.Channing Division of Network MedicineBrigham and Women’s HospitalBostonUSA
  3. 3.Department of MedicineHarvard Medical SchoolBostonUSA
  4. 4.Department of Plant SciencesThe University of CambridgeCambridgeUK
  5. 5.Partner Seeds Co., Ltd.AnseongRepublic of Korea

Personalised recommendations