Theoretical and Applied Genetics

, Volume 131, Issue 10, pp 2229–2243 | Cite as

Complete resistance to powdery mildew and partial resistance to downy mildew in a Cucumis hystrix introgression line of cucumber were controlled by a co-localized locus

  • Kaijing Zhang
  • Xing Wang
  • Wenwei Zhu
  • Xiaodong Qin
  • Jian Xu
  • Chunyan Cheng
  • Qunfeng Lou
  • Ji LiEmail author
  • Jinfeng ChenEmail author
Original Article


Key message A single recessive gene for complete resistance to powdery mildew and a major-effect QTL for partial resistance to downy mildew were co-localized in a Cucumis hystrix introgression line of cucumber.


Downy mildew (DM) and powdery mildew (PM) are two major foliar diseases in cucumber. DM resistance (DMR) and PM resistance (PMR) may share common components; however, the genetic relationship between them remains unclear. IL52, a Cucumis hystrix introgression line of cucumber which has been reported to possess DMR, was recently identified to exhibit PMR as well. In this study, a single recessive gene pm for PMR was mapped to an approximately 468-kb region on chromosome 5 with 155 recombinant inbred lines (RILs) and 193 F2 plants derived from the cross between a susceptible line ‘changchunmici’ and IL52. Interestingly, pm was co-localized with the major-effect DMR QTL dm5.2 confirmed by combining linkage analysis and BSA-seq, which was consistent with the observed linkage of DMR and PMR in IL52. Further, phenotype–genotype correlation analysis of DMR and PMR in the RILs indicated that the co-localized locus pm/dm5.2 confers complete resistance to PM and partial resistance to DM. Seven candidate genes for DMR were identified within dm5.2 by BSA-seq analysis, of which Csa5M622800.1, Csa5M622830.1 and Csa5M623490.1 were also the same candidate genes for PMR. A single nucleotide polymorphism that is present in the 3ˊ untranslated region (3′UTR) of Csa5M622830.1 co-segregated perfectly with PMR. The GATA transcriptional factor gene Csa5M622830.1 may be a likely candidate gene for DMR and PMR. This study has provided a clear evidence for the relationship between DMR and PMR in IL52 and sheds new light on the potential value of IL52 for cucumber DMR and PMR breeding program.



The authors thank Martin Kagiki Njogu (Department of Horticulture, College of Horticulture, Nanjing Agricultural University, Nanjing, China) for critical reading of the manuscript. This research was supported by National Natural Science Foundation of China (Key Program, No. 31430075), Special Fund for Agro-Scientific Research in the Public Interest (No. 201403032), National Key Research and Development Program of China (2016YFD0101705-5), National Key Research and Development Program of China (2016YFD0100204-25), National Natural Science Foundation of China (No. 31672168), Independent Innovation of Agricultural Science and Technology of Jiangsu Province (CX(17)3016), Fundamental Research Funds for the Central Universities (No. KYZ201828).

Compliance with ethical standards

Conflict of interest

The authors declare no conflict of interest.

Ethical standards

The experiments were performed in accordance with all relevant Chinese laws.

Supplementary material

122_2018_3150_MOESM1_ESM.pdf (271 kb)
Supplementary material 1 (PDF 270 kb)
122_2018_3150_MOESM2_ESM.pdf (570 kb)
Supplementary material 2 (PDF 569 kb)
122_2018_3150_MOESM3_ESM.pdf (316 kb)
Supplementary material 3 (PDF 316 kb)
122_2018_3150_MOESM4_ESM.pdf (227 kb)
Supplementary material 4 (PDF 227 kb)
122_2018_3150_MOESM5_ESM.pdf (180 kb)
Supplementary material 5 (PDF 179 kb)
122_2018_3150_MOESM6_ESM.pdf (340 kb)
Supplementary material 6 (PDF 340 kb)
122_2018_3150_MOESM7_ESM.pdf (17 kb)
Supplementary material 7 (PDF 16 kb)
122_2018_3150_MOESM8_ESM.pdf (128 kb)
Supplementary material 8 (PDF 128 kb)
122_2018_3150_MOESM9_ESM.pdf (39 kb)
Supplementary material 9 (PDF 39 kb)
122_2018_3150_MOESM10_ESM.pdf (45 kb)
Supplementary material 10 (PDF 44 kb)
122_2018_3150_MOESM11_ESM.pdf (10 kb)
Supplementary material 11 (PDF 9 kb)
122_2018_3150_MOESM12_ESM.pdf (33 kb)
Supplementary material 12 (PDF 32 kb)


  1. Abe A, Kosugi S, Yoshida K et al (2012) Genome sequencing reveals agronomically important loci in rice using MutMap. Nat Biotechnol 119:313–327Google Scholar
  2. An Y, Han X, Tang X et al (2014) Poplar GATA transcription factor PdGNC is capable of regulating chloroplast ultrastructure, photosynthesis, and vegetative growth in Arabidopsis under varying nitrogen levels. Plant Cell Tissue Organ Cult 30:174–178Google Scholar
  3. Bai Z, Yuan X, Cai R et al (2008) QTL analysis of downy mildew resistance in cucumber. Prog Nat Sci 18:706–710 (in Chinese) Google Scholar
  4. Berg JA, Appiano M, Martínez MS et al (2015) A transposable element insertion in the susceptibility gene CsaMLO8 results in hypocotyl resistance to powdery mildew in cucumber. BMC Plant Biol 15:243CrossRefPubMedPubMedCentralGoogle Scholar
  5. Bi Y, Zhang Y, Signorelli T et al (2005) Genetic analysis of Arabidopsis GATA transcription factor gene family reveals a nitrate-inducible member important for chlorophyll synthesis and glucose sensitivity. Plant J 44:680–692CrossRefGoogle Scholar
  6. Caldwell D, Chan E, de Vries J et al (2011) Methods and compositions for identifying downy mildew resistant cucumber plants. United States patent US 2011/0126309 A1Google Scholar
  7. Cao Q (2006) Research on cucumber alien translocation line possessing resistance to downy mildew and its application in cucumber breeding. Dissertation, Nanjing Agricultural University (in Chinese)Google Scholar
  8. Cavagnaro PF, Senalik DA, Yang L et al (2010) Genome-wide characterization of simple sequence repeats in cucumber (Cucumis sativus L.). BMC Genom 11:569CrossRefGoogle Scholar
  9. Chen J, Kirkbride J (2000) A new synthetic species Cucumis (Cucurbitaceae) from interspecific hybridization and chromosome doubling. Brittonia 52:315–319CrossRefGoogle Scholar
  10. Chen J, Staub J, Tashiro Y et al (1997) Successful interspecific hybridization between Cucumis sativus L. and C. hystrix Chakr. Euphytica 96:413–419CrossRefGoogle Scholar
  11. Chen J, Luo X, Staub J et al (2003) An allotriploid derived from a amphidiploid × diploid. Euphytica 131:235–241CrossRefGoogle Scholar
  12. Cockerham CC (1983) Covariances of relatives from self-fertilization. Crop Sci 23:1177–1180CrossRefGoogle Scholar
  13. Das S, Upadhyaya H, Bajaj D et al (2015) Deploying QTL-seq for rapid delineation of a potential candidate gene underlying major trait-associated QTL in chickpea. DNA Res 22:193–203CrossRefPubMedPubMedCentralGoogle Scholar
  14. de Ruiter W, Hofstede R, de Vries J, van den Heuvel H (2008) Combining QTL for resistance to CYSDV and powdery mildew in a single cucumber line. In: Proceedings of 9th EUCARPIA meeting on genetics and breeding of Cucurbitaceae (Pitrat M, ed), INRA, Avignon (France), 21–24 May, pp 181–188Google Scholar
  15. Dijkhuizen A, Kennard WC, Havey MJ et al (1996) RFLP variation and genetic relationships in cultivated cucumber. Euphytica 90:79–87Google Scholar
  16. Ding G, Qin Z, Zhou X et al (2007) RAPD and SCAR markers linked to downy mildew resistance genes in cucumber. Acta Bot Boreali-Occident Sin 27:1747–1751 (in Chinese) Google Scholar
  17. Epps W, Barnes W (1952) The increased susceptibility of the Palmetto cucumber to downy mildew in South Carolina. Plant Dis Rep 36:14–15Google Scholar
  18. Evangelisti E, Rey T, Schornack S (2014) Cross-interference of plant development and plant-microbe interactions. Curr Opin Plant Biol 20:118–126CrossRefPubMedPubMedCentralGoogle Scholar
  19. Fukino N, Yoshioka Y, Sugiyama M et al (2013) Identification and validation of powdery mildew (Podosphaera xanthii)-resistant loci in recombinant inbred lines of cucumber (Cucumis sativus L.). Mol Breed 32:267–277CrossRefGoogle Scholar
  20. Gao D, Appiano M, Huibers RP et al (2015) Natural loss-of-function mutation of EDR1 conferring resistance to tomato powdery mildew in Arabidopsis thaliana accession C24. Mol Plant Pathol 16:71–82CrossRefPubMedPubMedCentralGoogle Scholar
  21. He X, Li Y, Pandey S et al (2013) QTL mapping of powdery mildew resistance in WI 2757 cucumber (Cucumis sativus L.). Theor Appl Genet 129:819–829CrossRefGoogle Scholar
  22. He H, Zhu S, Jiang Z et al (2016) Comparative mapping of powdery mildew resistance gene Pm21 and functional characterization of resistance-related genes in wheat. Theor Appl Genet 129:819–829CrossRefPubMedPubMedCentralGoogle Scholar
  23. Horejsi T, Staub JE (1999) Genetic variation in cucumber (Cucumis sativus L.) as assessed by random amplified polymorphic DNA. Genet Resour Crop Evol 46:337–350CrossRefGoogle Scholar
  24. Huibers RP, Loonen AEHM, Gao D et al (2013) Powdery mildew resistance in tomato by impairment of SlPMR4 and SlDMR1. PLoS ONE 8:e67467CrossRefPubMedPubMedCentralGoogle Scholar
  25. Illa-Berenguer E, Van Houten J, Huang Z (2015) Rapid and reliable identification of tomato fruit weight and locule number loci by QTL-seq. Theor Appl Genet 128:1329–1342CrossRefPubMedPubMedCentralGoogle Scholar
  26. Jenkins SF, Wehner TC (1983) A system for the measurement of foliar diseases of cucumber. Cucurbit Genet Coop Rep 6:10–12Google Scholar
  27. Kooistra E (1968) Powdery mildew resistance in cucumber. Euphytica 17:236–244Google Scholar
  28. Kozma P, Dula T (2003) Inheritance of resistance to downy mildew and powdery mildew of hybrid family Muscadinia × V. vinifera × V. amurensis × Franco-American hybrid. Acta Hortic 603:457–463CrossRefGoogle Scholar
  29. Li H, Durbin R (2009) Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics 25:1754–1760CrossRefPubMedPubMedCentralGoogle Scholar
  30. Li Y, Yang L, Pathak M et al (2011) Fine genetic mapping of cp: a recessive gene for compact (dwarf) plant architecture in cucumber, Cucumis sativus L. Theor Appl Genet 123:973–983CrossRefGoogle Scholar
  31. Liu L, Yuan X, Cai R et al (2008) Quantitative trait loci for resistance to powdery mildew in cucumber under seedling spray inoculation and leaf disc infection. J Phytopathol 156:691–697CrossRefGoogle Scholar
  32. Lu H, Lin T, Klein J et al (2014) QTL-seq identifies an early flowering QTL located near flowering locus T in cucumber. Theor Appl Genet 127:1491–1499CrossRefGoogle Scholar
  33. McGrath MT (2001) Fungicide resistance in cucurbit powdery mildew: experiences and challenges. Plant Dis 85:236–245CrossRefGoogle Scholar
  34. Merdinoglu D, Wiedemann-Merdinoglu S, Coste P et al (2003) Genetic analysis of downy mildew resistance derived from Muscadinia rotundifolia. Acta Hortic 603:451–456CrossRefGoogle Scholar
  35. Michelmore RW, Paran I, Kesseli RV (1991) Identification of markers linked to disease-resistance genes by bulked segregant analysis: a rapid method to detect markers in specific genomic regions by using segregating populations. Proc Natl Acad Sci USA 88:9828–9832CrossRefPubMedPubMedCentralGoogle Scholar
  36. Nie J, He H, Peng J et al (2015a) Identification and fine mapping of pm5.1: a recessive gene for powdery mildew resistance in cucumber (Cucumis sativus L.). Mol Breed 35:7CrossRefGoogle Scholar
  37. Nie J, Wang Y, He H et al (2015b) Loss-of-function mutations in CsMLO1 confer durable powdery mildew resistance in cucumber (Cucumis sativus L.). Front. Plant Sci 6:1155Google Scholar
  38. Olaya G, Kuhn P, Hert A (2009) Fungicide resistance in cucurbit downy mildew. Phytopathology 9:S171Google Scholar
  39. Olczak-Woltman H, Marcinkowska J, Niemirowicz-Szczytt K (2011) The genetic basis of resistance to downy mildew in Cucumis spp.—latest developments and prospects. J Appl Genet 52:249–255CrossRefPubMedPubMedCentralGoogle Scholar
  40. Pandey M, Khan A, Singh V et al (2017) QTL-seq approach identified genomic regions and diagnostic markers for rust and late leaf spot resistance in groundnut (Arachis hypogaea L.). Plant Biotechnol J 15:927–941CrossRefPubMedPubMedCentralGoogle Scholar
  41. Pang X, Zhou X, Wan H et al (2013) QTL mapping of downy mildew resistance in an introgression line derived from interspecific hybridization between cucumber and Cucumis hystrix. J Phytopathol 161:536–543CrossRefGoogle Scholar
  42. Perchepied L, Bardin M, Dogimont C, Pitrat M (2005) Relationship between loci conferring downy mildew and powdery mildew resistance in melon assessed by quantitative trait loci mapping. Phytopathology 95:556–565CrossRefPubMedPubMedCentralGoogle Scholar
  43. Pérez-García A, Romero D, FernÁndez-OrtuÑo D et al (2009) The powdery mildew fungus Podosphaera fusca (synonym Podosphaera xanthii), a constant threat to cucurbits. Mol Plant Pathol 10:153–160CrossRefPubMedPubMedCentralGoogle Scholar
  44. Ren Y, Zhang Z, Liu J et al (2009) An integrated genetic and cytogenetic map of the cucumber genome. PLoS ONE 4:e5795CrossRefPubMedPubMedCentralGoogle Scholar
  45. Roque A, Adsuar J (1939) New cucumber varieties resistant to the downy mildew. In: Annual report agricultural experiment station of Puerto Rico fiscal year 1937–1938, pp 45–46Google Scholar
  46. Sakata Y, Kubo N, Morishita M et al (2006) QTL analysis of powdery mildew resistance in cucumber (Cucumis sativus L.). Theor Appl Genet 112:243–250CrossRefPubMedPubMedCentralGoogle Scholar
  47. Savory EA, Granke LL, Quesada-Ocampo LM et al (2011) The cucurbit downy mildew pathogen Pseudoperonospora cubensis. Mol Plant Pathol 12:217–226CrossRefGoogle Scholar
  48. Singh V, Khan A, Saxena R et al (2016a) Next-generation sequencing for identification of candidate genes for Fusarium wilt and sterility mosaic disease in pigeonpea (Cajanus cajan). Plant Biotechnol J 14:1183–1194CrossRefGoogle Scholar
  49. Singh V, Khan A, Jaganathan D et al (2016b) QTL-seq for rapid identification of candidate genes for 100-seed weight and root/total plant dry weight ratio under rainfed conditions in chickpea. Plant Biotechnol J 14:2110–2119CrossRefPubMedPubMedCentralGoogle Scholar
  50. Smith P (1948) Powdery mildew resistance in cucumber. Phytopathology 38:1027–1028Google Scholar
  51. Szczechura W, Staniaszek M, Klosinska U, Kozik E (2015) Molecular analysis of new sources of resistance to Pseudoperonospora cubensis (Berk. et Curt.) Rostovzev in cucumber. Russ J Genet 51:974–979CrossRefGoogle Scholar
  52. Takagi H, Abe A, Yoshida K et al (2013) QTL-seq: rapid mapping of quantitative trait loci in rice by whole genome resequencing of DNA from two bulked populations. Plant J 74:174–183CrossRefPubMedPubMedCentralGoogle Scholar
  53. Van Damme M, Zeilmaker T, Elberse J et al (2009) Downy mildew resistance in Arabidopsis by mutation of HOMOSERINE KINASE. Plant Cell 21:2179–2189CrossRefPubMedPubMedCentralGoogle Scholar
  54. Van Ooijen JW (2006) Joinmap 4.0. Software for the calculation of genetic linkage maps in experimental populations. Kyazma BV, Wagenigen, p 63Google Scholar
  55. Van Vliet GJA, Meysing WD (1974) Inheritance of resistance to Pseudoperonospora cubensis Rost. in cucumber (Cucumis sativus L.). Euphytica 23:251–255CrossRefGoogle Scholar
  56. Van Vliet GJA, Meysing WD (1977) Relation in the inheritance of resistance to Pseudoperonospora cubensis Rost and Sphaerotheca fuliginea Poll. in cucumber (Cucumis sativus L.). Euphytica 26:793–796CrossRefGoogle Scholar
  57. VandenLangenberg KM (2015) Studies on downy mildew resistance in cucumber (Cucumis sativus L.). Dissertation, North Carolina State UniversityGoogle Scholar
  58. Varshney RK, Terauchi R, McCouch SR (2014) Harvesting the promising fruits of genomics: applying genome sequencing technologies to crop breeding. PLoS Biol 12:e1001883CrossRefPubMedPubMedCentralGoogle Scholar
  59. Wan H, Yuan W, Bo K et al (2013) Genome-wide analysis of NBS-encoding disease resistance genes in Cucumis sativus and phylogenetic study of NBS-encoding genes in Cucurbitaceae crops. BMC Genom 14:109CrossRefGoogle Scholar
  60. Wang S, Basten CJ, Zeng ZB (2007) Windows QTL cartographer 2.5. Raleigh, NC: Department of Statistics, North Carolina State University
  61. Wang Y, VandenLangenberg KM, Wehner TC et al (2016) QTL mapping for downy mildew resistance in cucumber inbred line WI7120 (PI 330628). Theor Appl Genet 129:1493–1505CrossRefPubMedPubMedCentralGoogle Scholar
  62. Wang L, Liu Z, Zhang Y et al (2018a) Identification and fine mapping of a stay-green gene (Brnye1) in pakchoi (Brassica campestris L. ssp. chinensis). Theor Appl Genet 131:673–684CrossRefPubMedPubMedCentralGoogle Scholar
  63. Wang Y, VandenLangenberg K, Wen C et al (2018b) QTL mapping of downy and powdery mildew resistances in PI 197088 cucumber with genotyping-by-sequencing in RIL population. Theor Appl Genet 131:597–611CrossRefPubMedPubMedCentralGoogle Scholar
  64. Wei L, Jian H, Lu K et al (2016a) Genome-wide association analysis and differential expression analysis of resistance to Sclerotinia stem rot in Brassica napus. Plant Biotechnol J 14:1368–1380CrossRefPubMedPubMedCentralGoogle Scholar
  65. Wei Q, Fu W, Wang Y et al (2016b) Rapid identification of fruit length loci in cucumber (Cucumis sativus L.) using next-generation sequencing (NGS)-based QTL analysis. Sci Rep 6:27496CrossRefPubMedPubMedCentralGoogle Scholar
  66. Weng Y, Johnson S, Staub JE et al (2010) An extended microsatellite genetic map of cucumber, Cucumis sativus L. HortScience 45:880–886Google Scholar
  67. Wenger JW, Schwartz K, Sherlock G (2010) Bulk segregant analysis by high-throughput sequencing reveals a novel xylose utilization gene from Saccharomyces cerevisiae. PLoS Genet 5:e1000942CrossRefGoogle Scholar
  68. Win K, Vegas J, Zhang C et al (2017) QTL mapping for downy mildew resistance in cucumber via bulked segregant analysis using next-generation sequencing and conventional methods. Theor Appl Genet 130:199–211CrossRefPubMedPubMedCentralGoogle Scholar
  69. Xu X, Yu T, Xu R et al (2016) Fine mapping of a dominantly inherited powdery mildew resistance major-effect QTL, Pm1.1, in cucumber identifies a 41.1 kb region containing two tandemly arrayed cysteine-rich receptor-like protein kinase genes. Theor Appl Genet 129:507–516CrossRefPubMedPubMedCentralGoogle Scholar
  70. Xue H, Shi T, Wang F et al (2017) Interval mapping for red/green skin color in Asian pears using a modified QTL-seq method. Hortic Res 4:17053CrossRefPubMedPubMedCentralGoogle Scholar
  71. Yang L, Koo DH, Li Y et al (2012) Chromosome rearrangements during domestication of cucumber as revealed by high-density genetic mapping and draft genome assembly. Plant J 71:895–906CrossRefGoogle Scholar
  72. Yang L, Li D, Li Y et al (2013) A 1,681-locus consensus genetic map of cultivated cucumber including 67 NB-LRR resistance gene homolog and ten gene loci. BMC Plant Biol 13:53CrossRefPubMedPubMedCentralGoogle Scholar
  73. Yoshioka Y, Sakata Y, Sugiyama M, Fukino N (2014) Identification of quantitative trait loci for downy mildew resistance in cucumber (Cucumis sativus L.). Euphytica 198:265–276CrossRefGoogle Scholar
  74. Zhang H, Wang Z, Mao A et al (2008) SSR markers linked to the resistant gene of cucumber powdery mildew. Acta Agric Boreali-Sin 23:77–80 (in Chinese) Google Scholar
  75. Zhang S, Liu M, Miao H et al (2011) QTL mapping of resistance genes to powdery mildew in cucumber. Sci Agric Sin 44:3584–3593Google Scholar
  76. Zhang S, Liu M, Miao H et al (2013) Chromosomal mapping and QTL analysis of resistance to downy mildew in Cucumis sativus. Plant Dis 97:245–251CrossRefGoogle Scholar
  77. Zhong C, Sun S, Li P et al (2018) Next-generation sequencing to identify candidate genes and develop diagnostic markers for a novel Phytophthora resistance gene, RpsHC18, in soybean. Theor Appl Genet 131:525–538CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Kaijing Zhang
    • 1
  • Xing Wang
    • 1
  • Wenwei Zhu
    • 1
  • Xiaodong Qin
    • 1
  • Jian Xu
    • 1
  • Chunyan Cheng
    • 1
  • Qunfeng Lou
    • 1
  • Ji Li
    • 1
    Email author
  • Jinfeng Chen
    • 1
    Email author
  1. 1.State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of HorticultureNanjing Agricultural UniversityNanjingChina

Personalised recommendations