Advertisement

Pyramiding of nine transgenes in maize generates high-level resistance against necrotrophic maize pathogens

  • Xiang Zhu
  • Jinfeng Zhao
  • Hafiz Muhammad Khalid Abbas
  • Yunjun Liu
  • Menglan Cheng
  • Jue Huang
  • Wenjuan Cheng
  • Beibei Wang
  • Cuiying Bai
  • Guoying Wang
  • Wubei Dong
Original Article

Abstract

Key message Nine transgenes from different categories, viz. plant defense response genes and anti-apoptosis genes, played combined roles in maize to inhibit the necrotrophic pathogens Rhizoctonia solani and Bipolaris maydis.

Abstract

Maize sheath blight and southern corn leaf blight are major global threats to maize production. The management of these necrotrophic pathogens has encountered limited success due to the characteristics of their lifestyle. Here, we presented a transgenic pyramiding breeding strategy to achieve nine different resistance genes integrated in one transgenic maize line to combat different aspects of necrotrophic pathogens. These nine genes, selected from two different categories, plant defense response genes (Chi, Glu, Ace-AMP1, Tlp, Rs-AFP2, ZmPROPEP1 and Pti4), and anti-apoptosis genes (Iap and p35), were successfully transferred into maize and further implicated in resistance against the necrotrophic pathogens Rhizoctonia solani and Bipolaris maydis. Furthermore, the transgenic maize line 910, with high expression levels of the nine integrated genes, was selected from 49 lines. Under greenhouse and field trial conditions, line 910 showed significant resistance against maize sheath blight and southern corn leaf blight diseases. Higher-level resistance was obtained after the pyramiding of more resistance transgenes from different categories that function via different mechanisms. The present study provides a successful strategy for the management of necrotrophic pathogens.

Notes

Acknowledgements

We would like to thank Kangkang Wan, Lun Zhou, Junwei Shi, Wei Kuang, Rujing Lv, Jiaojiao Huan, Min Wang, Ling Lv, Lulu Chen, Xuan Tang, Lilin Wang, Wenjin HU and Tingting Zhang for their part-time job in field trial experiments. This work was supported by the National Major Project for Transgenic Organism Breeding (2011ZX08003-001 and 2016ZX08003-001) and the Hubei Provincial Technology Innovation Program (2016ABA093).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

122_2018_3143_MOESM1_ESM.pdf (724 kb)
Supplementary material 1 (PDF 724 kb)

References

  1. Abhishek A, Kumari R, Karjagi CG, Kumar P, Kumar B, Dass S, Sai Kumar R, Ramteke PW (2016) Tissue culture independent Agrobacterium tumefaciens mediated in planta transformation method for tropical maize (Zea mays L.). Proc Natl Acad Sci India Sect B Biol Sci 86:375–384CrossRefGoogle Scholar
  2. Allen A, Islamovic E, Kaur J, Gold S, Shah D, Smith TJ (2011) Transgenic maize plants expressing the Totivirus antifungal protein, KP4, are highly resistant to corn smut. Plant Biotechnol J 9:857–864CrossRefPubMedGoogle Scholar
  3. Anderson NA (1982) The genetics and pathology of Rhizoctonia Solani. Annu Rev Phytopathol 20:329–347CrossRefGoogle Scholar
  4. Bechinger B, Gorr SU (2017) Antimicrobial peptides: mechanisms of action and resistance. J Dent Res 96:254–260CrossRefPubMedGoogle Scholar
  5. Bertoni G (2011) Dormancy cycling in populus: the symplasmic connection. Plant Cell 23:3CrossRefPubMedCentralGoogle Scholar
  6. Boller T, Felix G (2009) A renaissance of elicitors: perception of microbe-associated molecular patterns and danger signals by pattern-recognition receptors. Annu Rev Plant Biol 60:379–406CrossRefPubMedGoogle Scholar
  7. Cameron KD, Teece MA, Smart LB (2006) Increased accumulation of cuticular wax and expression of lipid transfer protein in response to periodic drying events in leaves of tree tobacco. Plant Physiol 140:176–183CrossRefPubMedPubMedCentralGoogle Scholar
  8. Danon A, Rotari VI, Gordon A, Mailhac N, Gallois P (2004) Ultraviolet-C overexposure induces programmed cell death in Arabidopsis, which is mediated by caspase-like activities and which can be suppressed by caspase inhibitors, p35 and Defender against Apoptotic Death. J Biol Chem 279:779–787CrossRefPubMedGoogle Scholar
  9. Datta K, Velazhahan R, Oliva N, Ona I, Mew T, Khush GS, Muthukrishnan S, Datta SK (1999) Over-expression of the cloned rice thaumatin-like protein (PR-5) gene in transgenic rice plants enhances environmental friendly resistance to Rhizoctonia solani causing sheath blight disease. Theor Appl Genet 98:1138–1145CrossRefGoogle Scholar
  10. Datta K, Koukolíková-Nicola Z, Baisakh N, Oliva N, Datta SK (2000) Agrobacterium-mediated engineering for sheath blight resistance of Indica rice cultivars from different ecosystems. Theor Appl Genet 100:832–839CrossRefGoogle Scholar
  11. Dawson AM, Ferguson JN, Gardiner M, Green P, Hubbard A, Moscou MJ (2016) Isolation and fine mapping of Rps6: an intermediate host resistance gene in barley to wheat stripe rust. Theor Appl Genet 129:831–843CrossRefPubMedPubMedCentralGoogle Scholar
  12. De Buck S, Nolf J, De Meyer T, Virdi V, De Wilde K, Van Lerberge E, Van Droogenbroeck B, Depicker A (2013) Fusion of an Fc chain to a VHH boosts the accumulation levels in Arabidopsis seeds. Plant Biotechnol J 11:1006–1016CrossRefPubMedGoogle Scholar
  13. Dickman MB, Park YK, Oltersdorf T, Li W, Clemente T, French R (2001) Abrogation of disease development in plants expressing animal antiapoptotic genes. Proc Natl Acad Sci 98:6957–6962CrossRefPubMedGoogle Scholar
  14. Ding T, Su B, Chen X, Xie S, Gu S, Wang Q, Huang D, Jiang H (2017) An endophytic bacterial strain isolated from Eucommia ulmoides inhibits southern corn leaf blight. Front Microbiol 8:903CrossRefPubMedPubMedCentralGoogle Scholar
  15. Epple P, Apel K, Bohlmann H (1997) Overexpression of an endogenous thionin enhances resistance of Arabidopsis against Fusarium oxysporum. Plant Cell 9:509–520CrossRefPubMedPubMedCentralGoogle Scholar
  16. Favaloro B, Allocati N, Graziano V, Di Ilio C, De Laurenzi V (2012) Role of apoptosis in disease. Aging 4:330–349CrossRefPubMedPubMedCentralGoogle Scholar
  17. Fukuoka S, Saka N, Mizukami Y, Koga H, Yamanouchi U, Yoshioka Y, Hayashi N, Ebana K, Mizobuchi R, Yano M (2015) Gene pyramiding enhances durable blast disease resistance in rice. Sci Rep 5:7773CrossRefPubMedPubMedCentralGoogle Scholar
  18. Garg A, Prasanna BM, Sharma RC, Rathore RS, Saxena SC, Chauhan SVS (2007) Identification of resistance sources to banded leaf and sheath blight (Rhizoctonia solani f. sp. sasakil) in maize. Indian Phytopathol 60:162–166Google Scholar
  19. Glazebrook J, Rogers EE, Ausubel FM (1997) Use of Arabidopsis for genetic dissection of plant defense responses. Annu Rev Genet 31:547–569CrossRefPubMedGoogle Scholar
  20. González-Lamothe R, Boyle P, Dulude A, Roy V, Lezin-Doumbou C, Kaur GS, Bouarab K, Després C, Brisson N (2008) The transcriptional activator Pti4 is required for the recruitment of a repressosome nucleated by repressor SEBF at the potato PR-10a gene. Plant Cell 20:3136–3147CrossRefPubMedPubMedCentralGoogle Scholar
  21. Gu Y-Q, Wildermuth MC, Chakravarthy S, Loh Y-T, Yang C, He X, Han Y, Martin GB (2002) Tomato transcription factors Pti4, Pti5, and Pti6 activate defense responses when expressed in arabidopsis. Plant Cell 14:817–831CrossRefPubMedPubMedCentralGoogle Scholar
  22. Hancock WG, Lewis RS (2017) Heterosis, transmission genetics, and selection for increased growth rate in a N. tabacum × synthetic tobacco cross. Mol Breed 37:53CrossRefGoogle Scholar
  23. Hensel G, Kastner C, Oleszczuk S, Riechen J, Kumlehn J (2009) Agrobacterium-mediated gene transfer to cereal crop plants: current protocols for barley, wheat, triticale, and maize. Int J Plant Genomics 2009:835608CrossRefPubMedPubMedCentralGoogle Scholar
  24. Hooda KS, Khokhar MK, Parmar H, Gogoi R, Joshi D, Sharma SS, Yadav OP (2015) Banded leaf and sheath blight of maize: historical perspectives, current status and future directions. Proc Natl Acad Sci India Sect B Biol Sci 87:1041–1052CrossRefGoogle Scholar
  25. Huan J, Wan K, Liu Y, Dong W, Wang G (2013) Removing PCR for the elimination of undesired DNA fragments cycle by cycle. Sci Rep 3:2303CrossRefPubMedPubMedCentralGoogle Scholar
  26. Huang X, Wei Z (2005) Successful Agrobacterium-mediated genetic transformation of maize elite inbred lines. Plant Cell Tissue Organ Culture 83:187–200CrossRefGoogle Scholar
  27. Huffaker A, Dafoe NJ, Schmelz EA (2011) ZmPep1, an ortholog of Arabidopsis elicitor peptide 1, regulates maize innate immunity and enhances disease resistance. Plant Physiol 155:1325–1338CrossRefPubMedPubMedCentralGoogle Scholar
  28. Jeger MJ, Viljanen-Rollinson SLH (2001) The use of the area under the disease-progress curve (AUDPC) to assess quantitative disease resistance in crop cultivars. Theor Appl Genet 102:32–40CrossRefGoogle Scholar
  29. Jin L, Zhang H, Lu Y, Yang Y, Wu K, Tabashnik BE, Wu Y (2015) Large-scale test of the natural refuge strategy for delaying insect resistance to transgenic Bt crops. Nat Biotechnol 33:169–174CrossRefPubMedGoogle Scholar
  30. Kabbage M, Kessens R, Bartholomay LC, Williams B (2017) The life and death of a plant cell. Annu Rev Plant Biol 68:375–404CrossRefPubMedGoogle Scholar
  31. Karri Vr B, Kirti P (2013) Constitutive expression of a fusion gene comprising Trigonella foenum-graecum defensin (Tfgd2) and Raphanus sativus antifungal protein (RsAFP2) confers enhanced disease and insect resistance in transgenic tobacco. Plant Cell Tissue Organ Culture 115:309–319CrossRefGoogle Scholar
  32. Klarzynski O, Plesse B, Joubert J-M, Yvin J-C, Kopp M, Kloareg B, Fritig B (2000) Linear β-1,3 glucans are elicitors of defense responses in tobacco. Plant Physiol 124:1027–1038CrossRefPubMedPubMedCentralGoogle Scholar
  33. Lee CG, Da Silva CA, Dela Cruz CS, Ahangari F, Ma B, Kang M-J, He C-H, Takyar S, Elias JA (2011) Role of chitin and chitinase/chitinase-like proteins in inflammation, tissue remodeling, and injury. Annu Rev Physiol 73:479–501CrossRefPubMedGoogle Scholar
  34. Li X, Gasic K, Cammue B, Broekaert W, Korban SS (2003) Transgenic rose lines harboring an antimicrobial protein gene, Ace-AMP1, demonstrate enhanced resistance to powdery mildew (Sphaerotheca pannosa). Planta 218:226–232CrossRefPubMedGoogle Scholar
  35. Liu W, Liu J, Triplett L, Leach JE, Wang GL (2014) Novel insights into rice innate immunity against bacterial and fungal pathogens. Annu Rev Phytopathol 52:213–241CrossRefPubMedGoogle Scholar
  36. Liu J-J, Sniezko RA, Zamany A, Williams H, Wang N, Kegley A, Savin DP, Chen H, Sturrock RN (2017) Saturated genic SNP mapping identified functional candidates and selection tools for the Pinus monticola Cr2 locus controlling resistance to white pine blister rust. Plant Biotechnol J 15:1149–1162CrossRefPubMedPubMedCentralGoogle Scholar
  37. Michelmore RW, Christopoulou M, Caldwell KS (2013) Impacts of resistance gene genetics, function, and evolution on a durable future. Annu Rev Phytopathol 51:291–319CrossRefPubMedGoogle Scholar
  38. Mubeen S, Rafique M, Munis MFH, Chaudhary HJ (2017) Study of southern corn leaf blight (SCLB) on maize genotypes and its effect on yield. J Saudi Soc Agric Sci 16:210–217Google Scholar
  39. Ngullie M, Daiho L, Upadhyay D (2010) Biological management of fruit rot in the world’s hottest chilli (Capsicum chinense Jacq.). J Plant Prot Res 50:269–273CrossRefGoogle Scholar
  40. Ni M, Ma W, Wang X, Gao M, Dai Y, Wei X, Zhang L, Peng Y, Chen S, Ding L, Tian Y, Li J, Wang H, Wang X, Xu G, Guo W, Yang Y, Wu Y, Heuberger S, Tabashnik BE, Zhang T, Zhu Z (2017) Next-generation transgenic cotton: pyramiding RNAi and Bt counters insect resistance. Plant Biotechnol J 15:1204–1213CrossRefPubMedPubMedCentralGoogle Scholar
  41. Ogoshi A (1987) Ecology and pathogenicity of anastomosis and intraspecific groups of Rhizoctonia Solani Kuhn. Annu Rev Phytopathol 25:125–143CrossRefGoogle Scholar
  42. Ohta M, Matsui K, Hiratsu K, Shinshi H, Ohme-Takagi M (2001) Repression domains of class II ERF transcriptional repressors share an essential motif for active repression. Plant Cell 13:1959–1968CrossRefPubMedPubMedCentralGoogle Scholar
  43. Oñate-Sánchez L, Singh KB (2002) Identification of Arabidopsis ethylene-responsive element binding factors with distinct induction kinetics after pathogen infection. Plant Physiol 128:1313CrossRefPubMedPubMedCentralGoogle Scholar
  44. Osusky M, Zhou G, Osuska L, Hancock RE, Kay WW, Misra S (2000) Transgenic plants expressing cationic peptide chimeras exhibit broad-spectrum resistance to phytopathogens. Nat Biotechnol 18:1162CrossRefPubMedGoogle Scholar
  45. Paul JY, Becker DK, Dickman MB, Harding RM, Khanna HK, Dale JL (2011) Apoptosis-related genes confer resistance to Fusarium wilt in transgenic ‘Lady Finger’ bananas. Plant Biotechnol J 9:1141–1148CrossRefPubMedGoogle Scholar
  46. Rahman TAE, Oirdi ME, Gonzalez-Lamothe R, Bouarab K (2012) Necrotrophic pathogens use salicylic acid signaling pathway to promote disease development in tomato. Mol Plant Microbe Interact 25:1584–1593CrossRefPubMedGoogle Scholar
  47. Ray DK, Ramankutty N, Mueller ND, West PC, Foley JA (2012) Recent patterns of crop yield growth and stagnation. Nat Commun 3:1293CrossRefPubMedGoogle Scholar
  48. Raymond Park J, McFarlane I, Hartley Phipps R, Ceddia G (2011) The role of transgenic crops in sustainable development. Plant Biotechnol J 9:2–21CrossRefPubMedGoogle Scholar
  49. Riedlmeier M, Ghirardo A, Wenig M, Knappe C, Koch K, Georgii E, Dey S, Parker JE, Schnitzler JP, Vlot AC (2017) Monoterpenes support systemic acquired resistance within and between plants. Plant Cell 29:1440–1459PubMedPubMedCentralGoogle Scholar
  50. Rimbaud L, Dallot S, Gottwald T, Decroocq V, Jacquot E, Soubeyrand S, Thébaud G (2015) Sharka epidemiology and worldwide management strategies: learning lessons to optimize disease control in perennial plants. Annu Rev Phytopathol 53:357–378CrossRefPubMedGoogle Scholar
  51. Schlumbaum A, Mauch F, Vögeli U, Boller T (1986) Plant chitinases are potent inhibitors of fungal growth. Nature 324:365–367CrossRefGoogle Scholar
  52. Simko I, Piepho H-P (2012) The area under the disease progress stairs: calculation, advantage, and application. Phytopathology 102:381–389CrossRefPubMedGoogle Scholar
  53. Singh A, Shahi JP (2012) Banded leaf and sheath blight: an emerging disease of maize (Zea mays L.). Maydica 57:215–219Google Scholar
  54. Stoffels L, Taunt HN, Charalambous B, Purton S (2017) Synthesis of bacteriophage lytic proteins against Streptococcus pneumoniae in the chloroplast of Chlamydomonas reinhardtii. Plant Biotechnol J 15:1130–1140CrossRefPubMedPubMedCentralGoogle Scholar
  55. Strange RN, Scott PR (2005) Plant disease: a threat to global food security. Annu Rev Phytopathol 43:83–116CrossRefPubMedGoogle Scholar
  56. Sucher J, Boni R, Yang P, Rogowsky P, Buchner H, Kastner C, Kumlehn J, Krattinger SG, Keller B (2017) The durable wheat disease resistance gene Lr34 confers common rust and northern corn leaf blight resistance in maize. Plant Biotechnol J 15:489–496CrossRefPubMedGoogle Scholar
  57. Tabashnik BE, Carrière Y (2017) Surge in insect resistance to transgenic crops and prospects for sustainability. Nat Biotechnol 35:926–935CrossRefPubMedGoogle Scholar
  58. Tavormina P, De Coninck B, Nikonorova N, De Smet I, Cammue BPA (2015) The plant peptidome: an expanding repertoire of structural features and biological functions. Plant Cell 27:2095–2108CrossRefPubMedPubMedCentralGoogle Scholar
  59. Terras FR, Eggermont K, Kovaleva V, Raikhel NV, Osborn RW, Kester A, Rees SB, Torrekens S, Van Leuven F, Vanderleyden J (1995) Small cysteine-rich antifungal proteins from radish: their role in host defense. Plant Cell 7:573–588CrossRefPubMedPubMedCentralGoogle Scholar
  60. Testroet A, Lee K, Luth D, Wang K (2017) Comparison of transformation frequency using the bar gene regulated by the CaMV 35S or NOS promoter in Agrobacterium-mediated soybean (Glycine max L.) transformation. In Vitro Cell Dev Biol Plant 53:188–199CrossRefGoogle Scholar
  61. van der Does HC, Rep M (2017) Adaptation to the host environment by plant-pathogenic fungi. Annu Rev Phytopathol 55:427–450CrossRefPubMedGoogle Scholar
  62. Van Hautegem T, Waters AJ, Goodrich J, Nowack MK (2015) Only in dying, life: programmed cell death during plant development. Trends Plant Sci 20:102–113CrossRefPubMedGoogle Scholar
  63. Wei A, He C, Li B, Li N, Zhang J (2011) The pyramid of transgenes TsVP and BetA effectively enhances the drought tolerance of maize plants. Plant Biotechnol J 9:216–229CrossRefPubMedGoogle Scholar
  64. Wei L, Jian H, Lu K, Filardo F, Yin N, Liu L, Qu C, Li W, Du H, Li J (2016) Genome-wide association analysis and differential expression analysis of resistance to Sclerotinia stem rot in Brassica napus. Plant Biotechnol J 14:1368–1380CrossRefPubMedGoogle Scholar
  65. Wiesner-Hanks T, Nelson R (2016) Multiple disease resistance in plants. Annu Rev Phytopathol 54:229–252CrossRefPubMedGoogle Scholar
  66. Wijayanto T, Barker SJ, Wylie SJ, Gilchrist DG, Cowling WA (2009) Significant reduction of fungal disease symptoms in transgenic lupin (Lupinus angustifolius) expressing the anti-apoptotic baculovirus gene p35. Plant Biotechnol J 7:778–790CrossRefPubMedGoogle Scholar
  67. Wright CW, Duckett CS (2008) New insights into the function of IAP proteins: modulation of the MYC/MAX/MAD network. Dev Cell 14:3–4CrossRefPubMedPubMedCentralGoogle Scholar
  68. Wu Q, Zhang L, Xia H, Yu C, Dou K, Li Y, Chen J (2017) Omics for understanding synergistic action of validamycin A and Trichoderma asperellum GDFS1009 against maize sheath blight pathogen. Sci Rep 7:40140CrossRefPubMedPubMedCentralGoogle Scholar
  69. Wycoff K, Maclean J, Belle A, Yu L, Tran Y, Roy C, Hayden F (2015) Anti-infective immunoadhesins from plants. Plant Biotechnol J 13:1078–1093CrossRefPubMedPubMedCentralGoogle Scholar
  70. Yan X, Qiao H, Zhang X, Guo C, Wang M, Wang Y, Wang X (2017) Analysis of the grape (Vitis vinifera L.) thaumatin-like protein (TLP) gene family and demonstration that TLP29 contributes to disease resistance. Sci Rep 7:4269CrossRefPubMedPubMedCentralGoogle Scholar
  71. Zhan J, Thrall PH, Papaïx J, Xie L, Burdon JJ (2015) Playing on a pathogen’s weakness: using evolution to guide sustainable plant disease control strategies. Annu Rev Phytopathol 53:19–43CrossRefPubMedGoogle Scholar
  72. Zhao C-J, Wang A-R, Shi Y-J, Wang L-Q, Liu W-D, Wang Z-H, Lu G-D (2008) Identification of defense-related genes in rice responding to challenge by Rhizoctonia solani. Theor Appl Genet 116:501–516CrossRefPubMedGoogle Scholar
  73. Zheng A, Lin R, Zhang D, Qin P, Xu L, Ai P, Ding L, Wang Y, Chen Y, Liu Y, Sun Z, Feng H, Liang X, Fu R, Tang C, Li Q, Zhang J, Xie Z, Deng Q, Li S, Wang S, Zhu J, Wang L, Liu H, Li P (2013) The evolution and pathogenic mechanisms of the rice sheath blight pathogen. Nat Commun 4:1424CrossRefPubMedPubMedCentralGoogle Scholar
  74. Zhou D, Chen W, Lin Z, Chen H, Wang C, Li H, Yu R, Zhang F, Zhen G, Yi J, Li K, Liu Y, Terzaghi W, Tang X, He H, Zhou S, Deng XW (2016a) Pedigree-based analysis of derivation of genome segments of an elite rice reveals key regions during its breeding. Plant Biotechnol J 14:638–648CrossRefPubMedGoogle Scholar
  75. Zhou S, Liu Y, Zhang M, Li B, Chen X, Liang W (2016b) Comparison of the virulence and cognate virulence factors of multinucleate, binucleate and uninucleate Rhizoctonia isolates, causing sheath blight on maize plants. Eur J Plant Pathol 145:501–506CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Xiang Zhu
    • 1
  • Jinfeng Zhao
    • 2
  • Hafiz Muhammad Khalid Abbas
    • 1
  • Yunjun Liu
    • 3
  • Menglan Cheng
    • 1
  • Jue Huang
    • 1
  • Wenjuan Cheng
    • 1
  • Beibei Wang
    • 1
  • Cuiying Bai
    • 1
  • Guoying Wang
    • 3
  • Wubei Dong
    • 1
  1. 1.Department of Plant Pathology, College of Plant Science and Technology and the Key Lab of Crop Disease Monitoring and Safety Control in Hubei ProvinceHuazhong Agricultural UniversityWuhanChina
  2. 2.Millet Research InstituteShanxi Academy of Agricultural SciencesChangzhiChina
  3. 3.Institute of Crop ScienceChinese Academy of Agricultural SciencesBeijingChina

Personalised recommendations