Skip to main content

Advertisement

Log in

Genetic analysis of bolting after winter in sugar beet (Beta vulgaris L.)

  • Original Paper
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Key message

This study reveals for the first time a major QTL for post-winter bolting resistance in sugar beet ( Beta vulgaris L.). The knowledge of this QTL is a major contribution towards the development of a winter sugar beet with controlled bolting behavior.

Abstract

In cool temperate climates, sugar beets are currently grown as a spring crop. They are sown in spring and harvested in autumn. Growing sugar beet as a winter crop with an extended vegetation period fails due to bolting after winter. Bolting after winter might be controlled by accumulating genes for post-winter bolting resistance. Previously, we had observed in field experiments a low post-winter bolting rate of 0.5 for sugar beet accession BETA 1773. This accession was crossed with a biennial sugar beet with regular bolting behavior to develop a F3 mapping population. The population was grown in the greenhouse, exposed to artificial cold treatment for 16 weeks and transplanted to the field. Bolting was recorded twice a week from May until October. Post-winter bolting behavior was assessed by two different factors, bolting delay (determined as days to bolt after cold treatment) and post-winter bolting resistance (bolting rate after winter). For days to bolt, means of F3 families ranged from 25 to 164 days while for bolting rate F3 families ranged from 0 to 1. For each factor one QTL explaining about 65 % of the phenotypic variation was mapped to the same region on linkage group 9 with a partially recessive allele increasing bolting delay and post-winter bolting resistance. The results are discussed in relation to the potential use of marker-assisted breeding of winter sugar beets with controlled bolting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abegg F (1936) A genetic factor for the annual habit in beets and linkage relationships. J Agric Res 53:493–511

    Google Scholar 

  • Abou-Elwafa SF, Buttner B, Kopisch-Obuch FJ, Jung C, Muller AE (2012) Genetic identification of a novel bolting locus in Beta vulgaris which promotes annuality independently of the bolting gene B. Mol Breed 29:989–998

    Article  CAS  Google Scholar 

  • Bachmann L, Curth P, Röstel HJ (1963) Untersuchungen über Gibberellin-Verabreichung in verschiedenen Wachstumsphasen der Beta-Rüben. Theor Appl Genet 33:50–57

    Google Scholar 

  • Barzen E, Mechelke W, Ritter E, Seitzer JF, Salamini F (1992) RFLP markers for sugar beet breeding: chromosomal linkage maps and location of major genes for rhizomania resistance, monogermy and hypocotyl colour. Plant J 2:601–611

    Article  CAS  Google Scholar 

  • Bauer AB (1932) Beta Hivernalis. Beiträge zu den Versuchen des Prof. Németh mit winterbeständigen Rüben in Ungarn. Fortschritte der Landwirtschaft 7:1–4

    Google Scholar 

  • Beavis WD (1998) QTL analyses: power, precision and accuracy. In: Paterson AH (ed) Molecular analysis of complex traits. CRC Press, Boca raton, pp 145–161

  • Biancardi E, Campell LG, Skaracis GN, De Biaggi M (eds) (2005) Genetics and breeding of sugar beet. Science Publishers Inc, Enfield

    Google Scholar 

  • Boudry P, Wieber R, Saumitou-Laprade P, Pillen K, Dijk H, Jung C (1994) Identification of RFLP markers closely linked to the bolting gene B and their significance for the study of the annual habit in beets (Beta vulgaris L.). Theor Appl Genet 88:852–858

    Article  PubMed  CAS  Google Scholar 

  • Büttner B, Abou-Elwafa S, Zhang W, Jung C, Müller A (2010) A survey of EMS-induced biennial Beta vulgaris mutants reveals a novel bolting locus which is unlinked to the bolting gene B. Theor Appl Genet 121:1117–1131

    Article  PubMed  Google Scholar 

  • Chiurugwi T, Holmes HF, Qi A, Chia TYP, Hedden P, Mutasa-Gottgens ES (2013) Development of new quantitative physiological and molecular breeding parameters based on the sugar-beet vernalization intensity model. J Agr Sci 151:492–505

    Article  CAS  Google Scholar 

  • Claus E (1937) Die Züchtung einer schosswiderstandsfähigen Zuckerrübe. Die deutsche Zuckerindustrie 62(243–244):263–264

    Google Scholar 

  • Curth P (1962) Special Investigations on Vernalisation and Photoperiodicity of Sugar Beet. Zeitschrift fur Pflanzenzuechtung-Journal of Plant Breeding 47:254

    Google Scholar 

  • Doerge RW (2002) Mapping and analysis of quantitative trait loci in experimental populations. Nat Rev Genet 3:43–52

    Article  PubMed  CAS  Google Scholar 

  • Driessen S (2003) Beta vulgaris subsp. maritima an Deutschlands Ostseeküste. Fakultät für Mathematik, Informatik und Naturwissenschaften. Rheinisch-Westfälische Technische Hochschule, Aachen

  • Eichholz W, Röstel HJ (1962) Züchtung der Winterzuckerrübe. Theor Appl Genet 32:281–290

    Article  Google Scholar 

  • El-Mezawy A, Dreyer F, Jacobs G, Jung C (2002) High resolution mapping of the bolting gene B of sugar beet. Theor Appl Genet 105:100–105

    Article  PubMed  CAS  Google Scholar 

  • Esteban Baselga JA (1999) Charactérisation de la betterave de semis d’automne. Proc. IIRB, Sevilla, pp 1–8

    Google Scholar 

  • FAO (2012) FAOSTAT. http://faostat.fao.org. Accessed 10 Jan 2014

  • Gusta LV, Wisniewski M (2013) Understanding plant cold hardiness: an opinion. Physiol Plant 147:4–14

    Article  PubMed  CAS  Google Scholar 

  • Hallauer AR, Carena MJ, Filho JBM (1988) Quantitative genetics in maize breeding, Vol. 6. In: Handbook of plant breeding. Iowa State University Press, Oxford

  • Hoffmann CM, Kluge-Severin S (2010) Light absorption and radiation use efficiency of autumn and spring sown sugar beets. Field Crops Res 119:238–244

    Article  Google Scholar 

  • Hohmann U, Jacobs G, Jung C (2005) An EMS mutagenesis protocol for sugar beet and isolation of non-bolting mutants. Plant Breed 124:317–321

    Article  Google Scholar 

  • IPK (2006) GBIS/I—Genebank Information System of the Institute of Plant Genetics and Crop Plant Research Gatersleben. http://gbis.ipk-gatersleben.de. Accessed 17 Jan 2014

  • Jaggard KW, Qi A, Ober ES (2009) Capture and use of solar radiation, water, and nitrogen by sugar beet (Beta vulgaris L.). J Exp Bot 60:1919–1925

    Article  PubMed  CAS  Google Scholar 

  • JKI (2012) International Database for Beta—(IDBB) (Online Database). http://idbb.jki.bund.de. Accessed 22 Jan 2014

  • Jonsson BO (1999) Development of a winter beet alternative for South Europe. In: Proceedings of IIRB, Sevilla, pp 69–76

  • Jung C, Müller A (2009) Flowering time control and applications in plant breeding. Trends Plant Sci 14:563–573

    Article  PubMed  CAS  Google Scholar 

  • Kirchhoff M, Svirshchevskaya A, Hoffmann C, Schechert A, Jung C, Kopisch-Obuch FJ (2012) High degree of genetic variation of winter hardiness in a panel of Beta vulgaris L. Crop Sci 52:179–188

    Article  Google Scholar 

  • Kosambi DD (1943) The estimation of map distances from recombination values. Ann Eugen 12:172–175

    Article  Google Scholar 

  • Lasa JM, Medina B (1978) Multiplication of bolting resistant sugar-beet (Beta vulgaris L.). Anales de la Estacion Experimental de Aula Dei 14:163–172

    Google Scholar 

  • Laurent V, Devaux P, Thiel T, Viard F, Mielordt S, Touzet P, Quillet M (2007) Comparative effectiveness of sugar beet microsatellite markers isolated from genomic libraries and GenBank ESTs to map the sugar beet genome. Theor Appl Genet 115:793–805

    Article  PubMed  CAS  Google Scholar 

  • Lein JC, Sagstetter CM, Schulte D, Thurau T, Varrelmann M, Saal B, Koch G, Borchardt DC, Jung C (2008) Mapping of rhizoctonia root rot resistance genes in sugar beet using pathogen response-related sequences as molecular markers. Plant Breed 127:602–611

    Article  CAS  Google Scholar 

  • Lexander K (1980) Present knowledge of sugar beet bolting mechanisms. In: 43th Winter Congress of the Institut International de Recherches Betteravieres, Brussels, pp 245–258

  • Lexander K (1987) Characters related to the vernalization requirement of sugar beet. In: Manipulation of flowering. Butterworths, London, pp 147–158

  • McFarlane JS, Price C, Owen FV (1948) Strains of sugar beets extremely resistant to bolting. Proc Am Soc Sugar Beet Technol 5:151–153

    Google Scholar 

  • McGarry RC, Ayre BG (2012) Geminivirus-mediated delivery of florigen promotes determinate growth in aerial organs and uncouples flowering from photoperiod in cotton. PLoS One 7:e36746

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • McGrath JM, Trebbi D, Fenwick A, Panella L, Schulz B, Laurent V, Barnes S, Murray SC (2007) An open-source first-generation molecular genetic map from a sugarbeet × table beet cross and its extension to physical mapping. Crop Sci 47:S-27

    Article  Google Scholar 

  • Meier U (2001) Phenological growth stages and BBCH-identification keys of beet. In: Growth stages of mono- and dicotyledonous plants. BBCH Monograph, Federal Biological Research Center for Agriculture and Forestry, Germany

  • Milford GFJ, Jarvis PJ, Walters C (2010) A vernalization-intensity model to predict bolting in sugar beet. J Agric Sci 148:127–137

    Article  Google Scholar 

  • Mutasa-Goettgens E, Qi AM, Mathews A, Thomas S, Phillips A, Hedden P (2009) Modification of gibberellin signalling (metabolism & signal transduction) in sugar beet: analysis of potential targets for crop improvement. Transgenic Res 18:301–308

    Article  Google Scholar 

  • Pin PA, Nilsson O (2012) The multifaceted roles of FLOWERING LOCUS T in plant development. Plant Cell Environ 35:1742–1755

    Article  PubMed  CAS  Google Scholar 

  • Pin PA, Benlloch R, Bonnet D, Wremerth-Weich E, Kraft T, Gielen JJL, Nilsson O (2010) An antagonistic pair of FT homologs mediates the control of flowering time in sugar beet. Science 330:1397–1400

    Article  PubMed  CAS  Google Scholar 

  • Pin PA, Zhang W, Vogt SH, Dally N, Buettner B, Schulze-Buxloh G, Jelly NS, Chia TYP, Mutasa-Goettgens ES, Dohm JC, Himmelbauer H, Weisshaar B, Kraus J, Gielen JJL, Lommel M, Weyens G, Wahl B, Schechert A, Nilsson O, Jung C, Kraft T, Mueller AE (2012) The role of a pseudo-response regulator gene in life cycle adaptation and domestication of beet. Curr Biol 22:1095–1101

    Article  PubMed  CAS  Google Scholar 

  • Robertson AJ, Weninger A, Wilen RW, Fu P, Gusta LV (1994) Comparison of dehydrin gene-expression and freezing tolerance in bromus-inermis and secale-cereale grown in controlled environments, hydroponics, and the field. Plant Physiol 106:1213–1216

    PubMed  CAS  PubMed Central  Google Scholar 

  • R Development Core Team (2010) R: a language and environment for statistical computing, 2.12 edn. In: R Foundation for Statistical Computing, Vienna

  • Sadeghian SY, Becker HC, Johansson E (1993) Inheritance of bolting in three sugar-beet crosses after different periods of vernalization. Plant Breed 110:328–333

    Article  Google Scholar 

  • Saghai-Maroof MA, Soliman KM, Jorgensen RA, Allard RW (1984) Ribosomal DNA spacer-length polymorphisms in barley: mendelian inheritance, chromosomal location, and population dynamics. Proc Natl Acad Sci 81:8014–8018

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Schneider G (1960) Biochemische und entwicklungsphysiologische Untersuchungen zur Frage des Schossens und der Blütenbildung der Zuckerrübe. Planta 55:669–686

    Article  CAS  Google Scholar 

  • Schneider K, Kulosa D, Soerensen TR, Mohring S, Heine M, Durstewitz G, Polley A, Weber E, Jamsari Lein J, Hohmann U, Tahiro E, Weisshaar B, Schulz B, Koch G, Jung C, Ganal M (2007) Analysis of DNA polymorphisms in sugar beet (Beta vulgaris L.) and development of an SNP-based map of expressed genes. Theor Appl Genet 115:601–615

    Article  PubMed  CAS  Google Scholar 

  • Smit AL (1983) Influence of external factors on growth and development of sugar-beet (Beta vulgaris L.)—dissertation. Centre for Agricultural Publishing and Documentation

  • Stout M (1946) Relation of temperature to reproduction in sugar beets. J Agric Res Wash DC 72:49–68

    Google Scholar 

  • Utz HF, Melchinger AE (2006) PLABQTL—a computer program to map QTL. Version 1.2. User manual. Institute of Plant Breeding, Seed Science and Population Genetics, University Hohenheim, Germany

  • Van Dijk H (2009) Evolutionary change in flowering phenology in the iteroparous herb Beta vulgaris ssp. maritima: a search for the underlying mechanisms. J Exp Bot 60:3143–3155

    Article  PubMed  Google Scholar 

  • Van Ooijen JW (2006) Join Map® 4—software for the calculation of genetic linkage maps in experimental populations. User manual. Wageningen, The Netherlands

  • Viard F, Bernard J, Desplanque B (2002) Crop-weed interactions in the Beta vulgaris complex at a local scale: allelic diversity and gene flow within sugar beet fields. Theor Appl Genet 104:688–697

    Article  PubMed  CAS  Google Scholar 

  • Vos P, Hogers R, Bleeker M, Reijans M, van de Lee T, Hornes M, Frijters A, Pot J, Peleman J, Kuiper M et al (1995) AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res 23(21):4407–4414

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Wisniewski ME, Bassett CL, Renaut J, Farrell R Jr, Tworkoski T, Artlip TS (2006) Differential regulation of two dehydrin genes from peach (Prunus persica) by photoperiod, low temperature and water deficit. Tree Physiol 26:575–584

    Article  PubMed  CAS  Google Scholar 

  • Wood DW, Scott RK (1975) Sowing sugar beet in autumn in England. J Agric Sci 84:97–108

    Article  Google Scholar 

  • Yamagishi N, Yoshikawa N (2011) Expression of FLOWERING LOCUS T from Arabidopsis thaliana induces precocious flowering in soybean irrespective of maturity group and stem growth habit. Planta 233:561–568

    Article  PubMed  CAS  Google Scholar 

  • Yamagishi N, Sasaki S, Yamagata K, Komori S, Nagase M, Wada M, Yamamoto T, Yoshikawa N (2011) Promotion of flowering and reduction of a generation time in apple seedlings by ectopical expression of the Arabidopsis thaliana FT gene using the Apple latent spherical virus vector. Plant Mol Biol 75:193–204

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was funded by the German Federal Ministry of Education and Research (BMBF) under the grant no. FKZ 0315465B. We thank Martin Kirchhoff, Meike Friedrichsen, Sabrina Butze, Monika Bruisch and Erwin Danklefsen for support and technical assistance in the lab, greenhouse and field. The Institute for Clinical Molecular Biology (IKMB), University Kiel, Germany, is acknowledged for collaborating in DNA sequencing.

Conflict of interest

None of the authors have any conflicts of interest associated with this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Friedrich J. Kopisch-Obuch.

Additional information

Communicated by Heiko C. Becker.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 44 kb)

Supplementary material 2 (DOCX 3993 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pfeiffer, N., Tränkner, C., Lemnian, I. et al. Genetic analysis of bolting after winter in sugar beet (Beta vulgaris L.). Theor Appl Genet 127, 2479–2489 (2014). https://doi.org/10.1007/s00122-014-2392-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-014-2392-x

Keywords

Navigation