Advertisement

Theoretical and Applied Genetics

, 123:1145 | Cite as

Microsatellite mapping of Ae. speltoides and map-based comparative analysis of the S, G, and B genomes of Triticeae species

  • O. DobrovolskayaEmail author
  • C. Boeuf
  • J. Salse
  • C. Pont
  • P. Sourdille
  • M. Bernard
  • E. Salina
Original Paper

Abstract

The first microsatellite linkage map of Ae. speltoides Tausch (2n = 2x = 14, SS), which is a wild species with a genome closely related to the B and G genomes of polyploid wheats, was developed based on two F2 mapping populations using microsatellite (SSR) markers from Ae. speltoides, wheat genomic SSRs (g-SSRs) and EST-derived SSRs. A total of 144 different microsatellite loci were mapped in the Ae. speltoides genome. The transferability of the SSRs markers between the related S, B, and G genomes allowed possible integration of new markers into the T. timopheevii G genome chromosomal maps and map-based comparisons. Thirty-one new microsatellite loci assigned to the genetic framework of the T. timopheevii G genome maps were composed of wheat g-SSR (genomic SSR) markers. Most of the used Ae. speltoides SSRs were mapped onto chromosomes of the G genome supporting a close relationship between the G and S genomes. Comparative microsatellite mapping of the S, B, and G genomes demonstrated colinearity between the chromosomes within homoeologous groups, except for intergenomic T6AtS.1G, T4AL.5AL.7BS translocations. A translocation between chromosomes 2 and 6 that is present in the T. aestivum B genome was found in neither Ae. speltoides nor in T. timopheevii. Although the marker order was generally conserved among the B, S, and G genomes, the total length of the Ae. speltoides chromosomal maps and the genetic distances between homoeologous loci located in the proximal regions of the S genome chromosomes were reduced compared with the B, and G genome chromosomes.

Keywords

Mapping Population Bread Wheat Shared Region Genome Chromosome Polyploid Wheat 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

The authors would like to thank Prof. T.I. Aksenovich, IC&G SB RAS, Novosibirsk, Russia, and the anonymous referee for helpful comments and suggestions on the paper. This study was supported, in part, by an integration project (no. 129) of the Siberian Branch of the Russian Academy of Sciences, the Ministry of Education and Science of the Russian Federation (a state contract no. P409) and Russian Foundation for Basic Research under grant 10-04-01458-a.

References

  1. Adonina IG, Salina EA, Pestsova EG, Röder MS (2005) Transferability of wheat microsatellite to diploid Aegilops species and determination of chromosomal localizations of microsatellites in the S genome. Genome 48:959–970PubMedCrossRefGoogle Scholar
  2. Akhunov ED, Goodyear JA, Geng S, Qi L-L, Echalier B et al (2003) The organization and rate of evolution of the wheat genomes are correlated with recombination rates along chromosome arms. Genome Res 13:753–763PubMedCrossRefGoogle Scholar
  3. Allard RW (1956) Formulas and tables to facilitate the calculation of recombination values in heredity. Hilgardia 24:235–278Google Scholar
  4. Badaeva ED, Friebe B, Gill BS (1996) Genome differentiation in Aegilops. 1. Physical mapping of 5S and 18S–26S ribosomal RNA gene families in diploid species. Genome 39:1150–1158PubMedCrossRefGoogle Scholar
  5. Boyko E, Kalendar R, Korzun V, Fellers J, Korol A et al (2002) A high-density cytogenetic map of the Aegilops tauschii genome incorporating retrotransposons and defense-related genes: insights into cereal chromosome structure and function. Plant Mol Biol 48:767–790PubMedCrossRefGoogle Scholar
  6. Brown-Guedira GL, Singh S, Fritz AK (2003) Performance and mapping of leaf rust resistance transferred to wheat from Triticum timopheevii subsp. Armeniacum. Phytopathology 93:784–789PubMedCrossRefGoogle Scholar
  7. Chapman V, Miller TE, Riley R (1976) Equivalence of the A genome of bread wheat and that of Triticum urartu. Genet Res (Camb) 27:69–76CrossRefGoogle Scholar
  8. Devos KM, Gale MD (2000) Genome relationships: the grasses model in current research. Plant Cell 12:637–646PubMedCrossRefGoogle Scholar
  9. Devos KM, Millan T, Gale MD (1993) Comparative RFLP maps of the homoeologous group-2 chromosomes of wheat, rye and barley. Theor Appl Genet 85:784–792Google Scholar
  10. Devos KM, Dubkovsky J, Dvorak J, Chinoy CN, Gale MD (1995) Structural evolution of wheat chromosome 4A, 5A, and 7B and its impact on recombination. Theor Appl Genet 91:282–288CrossRefGoogle Scholar
  11. Dobrovolskaya O, Arbuzova VS, Lohwasser U, Röder MS, Börner A (2006) Microsatellite mapping of complementary genes for purple grain colour in bread wheat (Triticum aestivum L.). Euphytica 150:355–364CrossRefGoogle Scholar
  12. Dobrovolskaya O, Pshenichnikova TA, Arbuzova VS, Lohwasser U, Röder MS, Börner A (2007) Molecular mapping of genes determining hairy leaf character in common wheat with respect to other species of the Triticeae. Euphytica 155:285–293CrossRefGoogle Scholar
  13. Dubcovsky J, Luo MC, Zhong GY, Brandsteitter R, Desai A, Kilian A, Kleinhofs A, Dvorak J (1996) Genetic map of diploid wheat, Triticum monococcum L. and its comparison with maps of Hordeum vulgare L. Genetics 143:983–999PubMedGoogle Scholar
  14. Dvorak J (1976) The relationship between the genome of Triticum urartu and the A and B genomes of Triticum aestivum. Can J Genet Cytol 18:371–377Google Scholar
  15. Dvorak J (1977) Transfer of leaf rust resistance from Aegilops speltoides to Triticum aestivum. Can J Genet Cytol 19:133–141Google Scholar
  16. Dvorak J, Zhang HB (1990) Variation in repeated nucleotide sequences sheds light on the phylogeny of the wheat B and G genomes. Proc Natl Acad Sci USA 87:9640–9644PubMedCrossRefGoogle Scholar
  17. Dvorak J, Deal KR, Luo MC (2006) Discovery and mapping of wheat Ph1 suppressors. Genetics 174:17–27PubMedCrossRefGoogle Scholar
  18. Eig A (1929) Monographisch-Kritische Uebersicht der Gatung Aegilops Repertorium specierum novarum regni vegetabilis. F F Dahlem bei Berlin, Verlag des Repertoriums 55:1–228Google Scholar
  19. Feldman M, Lupton FGH, Miller TE (1995) Wheats. In: Smartt J, Simmonds NW (eds) Evolution of crops. J Smartt and NW Simmonds Longman Group, London, pp 184–192Google Scholar
  20. Fernandez-Calvin B, Orellana J (1994) Metaphase I bound arms frequency and genome analysis in wheat-Aegilops hybrids. 3. Similar relationships between the B genome of wheat and S or Sl genomes of Ae. speltoides, Ae. longissima and Ae. sharonensis. Theor Appl Genet 88:1043–1049CrossRefGoogle Scholar
  21. Feuillet C, Keller B (2002) Comparative genomics in the grass family: molecular characterization of grass genome structure and evolution. Ann Bot 89:3–10PubMedCrossRefGoogle Scholar
  22. Friebe B, Gill BS (1996) Chromosome banding and genome analysis in dipoid and cultivated polyploid wheats. In: Jauhar PP (ed) Methods of genome analysis in plants. CRC Press, New York, pp 39–60Google Scholar
  23. Friebe B, Jiang J, Raupp WJ, McIntosh RA, Gill BS (1996) Characterization of wheat-alien translocations conferring resistance to diseases and pests: current status. Euphytica 91:248–254CrossRefGoogle Scholar
  24. Friebe B, Qi LL, Nasuda S, Zhang P, Tuleen NA, Gill BS (2000) Development of a complete set of Triticum aestivumAegilops speltoides chromosome addition lines. Theor Appl Genet 101:51–58CrossRefGoogle Scholar
  25. Ganal MW, Röder MS (2007) Microsatellite and SNP markers in wheat breeding. In: Varshney RK, Tuberosa R (eds) Genomics assisted crop improvement. Vol. 2: genomics applications in crops. Springer, Dordrecht, pp 1–24CrossRefGoogle Scholar
  26. Gill KS, Gill BS, Endo TR, Boyko EV (1996) Identification and high-density mapping of gene-rich regions in chromosome group 5 of wheat. Genetics 143:1001–1012PubMedGoogle Scholar
  27. Giorgi D, D’ovidio R, Tanzarella OA, Porceddu E (2002) RFLP analysis of Aegilpos species belonging to the Sitopsis section. Genet Resour Crop Evol 49:145–151CrossRefGoogle Scholar
  28. Goncharov NP (2002) Comparative genetics of wheat and their related species. Siberian University Press, Novosibirsk, p 149Google Scholar
  29. Gupta PK, Balyan HS, Edwards KJ, Isaac P, Korzun V, Röder M, Gautier MF, Joudrier P, Schlatter AR, Dubcovsky J, De la Pena RC, Khairallah M, Penner G, Hayden MJ, Sharp P, Keller B, Wang RCC, Hardouin JP, Jack P, Leroy P (2002) Genetic mapping of 66 new microsatellite (SSR) loci in bread wheat. Theor Appl Genet 105:413–422PubMedCrossRefGoogle Scholar
  30. Hossain KG, Kalavacharla V, Lazo GR, Hegstad J, Wentz MJ et al (2004) A chromosome bin map of 2148 expressed sequence tag loci of wheat homoeologous group 7. Genetics 168:687–699PubMedCrossRefGoogle Scholar
  31. Hsam SLK, Lapochkina IF, Zeller FJ (2003) Chromosomal location of genes for resistance to powdery mildew in common wheat (Triticum aestivum L. em Thell.). 8. Gene Pm32 in a wheat-Aegilops speltoides translocation line. Euphytica 133:367–370CrossRefGoogle Scholar
  32. Huang S, Sirikhachornkit A, Su X, Faris J, Gill B, Haselkorn R, Gornicki P (2002) Genes encoding plastid acetyl-CoA carboxylase and 3-phosphoglycerate kinase of the Triticum/Aegilops complex and the evolutionary history of polyploids wheat. Proc Natl Acad Sci USA 99:8133–8138PubMedCrossRefGoogle Scholar
  33. Jaccard P (1908) Nouvelles recherches sur la distribution florale. Bull Soc Vaud Sci Nat 4:223–270Google Scholar
  34. Jiang J, Gill BS (1994) Different species-specific chromosome translocation in Triticum timopheevii and T. turgidum support diphyletic origin of polyploid wheats. Chromosom Res 2:59–64CrossRefGoogle Scholar
  35. Kilian B, Özkan H, Deusch O, Effgen S, Brandolini A, Kohl J, Martin W, Salamini F (2007) Independent wheat B and G genome origins in outcrossing Aegilops progenitor haplotypes. Mol Biol Evol 24:217–227Google Scholar
  36. Kimber G, Athwal RS (1972) A reassessment of the course of evolution of wheat. Proc Natl Acad Sci USA 69:912–915PubMedCrossRefGoogle Scholar
  37. Kosambi DD (1943) The estimation of map distances from recombination values. Ann Eugen 12:172–175CrossRefGoogle Scholar
  38. Kumar S, Tamura K, Nei M (2004) MEGA3: integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief Bioinforma 5:150–163CrossRefGoogle Scholar
  39. Kunzel G, Korzun L, Meister A (2000) Cytologically integrated physical restriction fragment length polymorphism maps for the barley genome based on translocation breakpoints. Genetics 154:397–412PubMedGoogle Scholar
  40. Lander ES, Green P, Abrahamson J, Barlow A, Daly MJ, Lincoln SE, Newburg L (1987) MAPMAKER: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics 1:174–181PubMedCrossRefGoogle Scholar
  41. Levy AV, Feldman M (2002) The impact of polyploidy on grass genome evolution. Plant Physiol 130:1587–1593PubMedCrossRefGoogle Scholar
  42. Luo M, Deal KR, Yang Z, Dvorak J (2005) Comparative genetic maps reveal extreme crossover localization in the Aegilops speltoides chromosomes. Theor Appl Genet 111:1098–1106PubMedCrossRefGoogle Scholar
  43. Luo MC, Deal KR, Akhunov ED, Akhunova AR, Anderson OD, Anderson JA, Blake N, Clegg MT, Coleman-Derr D, Conley EJ et al (2009) Genome comparisons reveal a dominant mechanism of chromosome number reduction in grasses and accelerated genome evolution in Triticeae. Proc Natl Acad Sci USA 106:15780–15785PubMedCrossRefGoogle Scholar
  44. Maestra B, Naranjo T (1998) Homoeologous relationships of Aegilops speltoides chromosomes to bread wheat. Theor Appl Genet 97:181–186CrossRefGoogle Scholar
  45. Miftahudin KR, Ma X-F, Mahmoud AA, Layton J et al (2004) Analysis of expressed sequence tag loci on wheat chromosome group 4. Genetics 168:651–663PubMedCrossRefGoogle Scholar
  46. Mori N, Lui YG, Tsunewaki K (1995) Wheat phylogeny determined by RFLP analysis of nuclear DNA: II. Wild tetraploid wheats. Theor Appl Genet 90:129–134CrossRefGoogle Scholar
  47. Naik S, Gill KS, Prakasa Rao VS, Gupta VS, Tamhankar SA, Pujar S, Gill BS, Ranjekar PK (1998) Identification of a STS marker linked to the Aegilops speltoides-derived leaf rust resistance gene Lr28 in wheat. Theor Appl Genet 97:535–540CrossRefGoogle Scholar
  48. Naranjo T (1990) Chromosome structure of durum wheat. Theor Appl Genet 79:397–400CrossRefGoogle Scholar
  49. Nelson JC, Sorrells ME, Van Deynze AE, Lu YH, Atkinson M, Bernard M et al (1995) Molecular mapping of wheat: major genes and rearrangements in homoeologous group 4, 5, and 7. Genetics 141:721–731PubMedGoogle Scholar
  50. Nicot N, Chiquet V, Gandon B, Amilhat L, Legeai F, Leroy F, Bernard M, Sourdille P (2004) Study of simple sequence repeat (SSR) markers from wheat expressed sequence tags (ESTs). Theor Appl Genet 109:800–805PubMedCrossRefGoogle Scholar
  51. Peacock WJ, Gerlach WL, Dennis ES (1981) Molecular aspects of wheat evolution: repeated DNA sequences. In: Evans LT, Peacock WJ (eds) Wheat science—today and tomorrow. Cambridge University Press, Cambridge, pp 41–60Google Scholar
  52. Perugini LD, Murphy JP, Marshall D, Brown-Guedira G (2007) Pm37, a new broadly effective powdery mildew resistance gene from Triticum timopheevii. Theor and Appl Genet 116:417–425CrossRefGoogle Scholar
  53. Röder MS, Korzun V, Wendehake K, Plaschke J, Tixier M-H, Leroy P, Ganal MW (1998) A microsatellite map of wheat. Genetics 149:2007–2023PubMedGoogle Scholar
  54. Rodriguez S, Perera E, Maestra B, Diez M, Naranjo T (2000) Chromosome structure of Triticum timopheevii relative to T. turgidum. Genome 43:923–930PubMedGoogle Scholar
  55. Salina EA, Leonova IN, Efremova TT, Röder MS (2006a) Wheat genome structure: translocations during the course of polyploidization. Funct Integr Genomics 6:71–80PubMedCrossRefGoogle Scholar
  56. Salina EA, Lim KY, Badaeva ED, Scherban AB, Adonina IG, Amosova AV, Samatadze TE, Vatolina TYu, Zoschuk SA, Leitch A (2006b) Phylogenetic reconstruction of Aegilops section Sitopsis and the evolution of tandem repeats in the diploid and derived wheat polyploids. Genome 49:1023–1035PubMedCrossRefGoogle Scholar
  57. Sasanuma T, Miyashita NT, Tsunewaki K (1996) Wheat phylogeny determined by RFLP analysis of nuclear DNA. 3. Intra- and interspecific variations of five Aegilops Sitopsis species. Theor Appl Genet 92:928–934CrossRefGoogle Scholar
  58. Singh K, Ghai M, Garg M, Chhuneja P, Kaur P, Schnurbusch T, Keller B, Dhaliwal HS (2007) An integrated molecular linkage map of diploid wheat based on a Triticum boeoticum × T. monococcum RIL population. Theor Appl Genet 115:301–312PubMedCrossRefGoogle Scholar
  59. Sourdille P, Tavaud M, Charmet G, Bernard M (2001) Transferability of wheat microsatellites to diploid triticeae species carrying the A, B and D genomes. Theor Appl Genet 103:346–352CrossRefGoogle Scholar
  60. Taenzler B, Esposti RF, Vaccino P, Brandolini A, Effgen S, Heun M, Schafer-pregl R, Borghi B, Salamini F (2002) Molecular linkage map of einkorn wheat: mapping of storage-protein and soft-glume genes and bread-making quality QTLs. Genet Res Camb 80:131–143CrossRefGoogle Scholar
  61. Thiel T, Michalek W, Varshney RK, Graner A (2003) Exploiting EST databases for the development and characterization of gene-derived SSR-markers in barley (Hordeum vulgare L.). Theor Appl Genet 106:411–422PubMedGoogle Scholar
  62. Tixier MH, Sourdille P, Charmet G, Gay G, Jaby C, Cadalen T, Bernard S, Nicolas P, Bernard M (1998) Detection of QTLs for crossability in wheat using a doubled-haploid population. Theor Appl Genet 97:1076–1082CrossRefGoogle Scholar
  63. Tsunewaki K (1996) Plasmon analysis as the counterpart of genome analysis in plants. In: Jauhar PP (ed) Methods of genome analysis in plants. CRC Press, New York, pp 271–299Google Scholar
  64. Tsunewaki K, Ogihara Y (1983) The molecular basis of genetic diversity among cytoplasms of Triticum and Aegilops species. II. On the origin of polyploidy wheat cytoplasms as suggested by chloroplast DNA restriction fragment patterns. Genetics 104:155–171PubMedGoogle Scholar
  65. Valkoun JJ (2001) Wheat pre-breeding using wild progenitors. Euphytica 119:17–23CrossRefGoogle Scholar
  66. Yu J-K, Dake T, Singh S, Benscher D, Li W, Gill B, Sorrells M (2004) Development and mapping of EST-derived simple sequence repeat markers for hexaploid wheat. Genome 47:805–818PubMedCrossRefGoogle Scholar
  67. Zhang LY (2006) Study of the transferability of microsatellite markers derived from bread wheat (T. aestivum) or rice (O. sativa) ESTs (EST-SSRs) to their close and wild relatives and evaluation of their potential for the organization of genetic resources in the grass family. Doctoral Thesis, pp 45–101Google Scholar
  68. Zhang H, Reader SM, Liu X, Jia JZ, Gale MD, Devos KM (2001) Comparative genetic analysis of the Aegilops longissima and Ae. sharonensis genomes with common wheat. Theor Appl Genet 103:518–525CrossRefGoogle Scholar
  69. Zhang LY, Bernard M, Leroy P, Feuillet C, Sourdille P (2005) High transferability of bread wheat EST-derived SSRs to other cereals. Theor Appl Genet 111:677–687PubMedCrossRefGoogle Scholar
  70. Zhang LY, Ravel C, Bernard M, Balfourier F, Leroy P, Feuillet C, Sourdille P (2006) Transferable bread wheat EST-SSRs can be useful for phylogenetic studies among the Triticeae species. Theor Appl Genet 113:407–418PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • O. Dobrovolskaya
    • 1
    Email author
  • C. Boeuf
    • 2
  • J. Salse
    • 2
  • C. Pont
    • 2
  • P. Sourdille
    • 2
  • M. Bernard
    • 2
  • E. Salina
    • 1
  1. 1.Institute of Cytology and GeneticsSiberian Branch of the Russian Academy of SciencesNovosibirskRussia
  2. 2.UMR INRA-UBP Génétique, Diversité et Ecophysiologie des CéréalesClermont-Ferrand Cedex 2France

Personalised recommendations