Advertisement

Springer Nature is making Coronavirus research free. View research | View latest news | Sign up for updates

Genetic transformation of plastids of different Solanaceae species using tobacco cells as organelle hosts

Abstract

The plastid genome of angiosperms represents an attractive target for genetic manipulations. However plastid transformation of higher plants, especially of agriculturally valuable crops is an extremely difficult problem. Transformation protocols developed for tobacco 15 years ago failed to produce similar results with more than a handful of other species so far. We have analyzed plastid transformability of remote cytoplasmic hybrids (cybrids) that combine nuclei of tobacco, an easily transformable species, and plastids of some other, recalcitrant Solanaceae species. Here, we demonstrate that the plastids of five species of Solanaceae family, representing two subfamilies and three tribes, can be easily transformed if the plastids of these species are transferred into a cell of a transformable species (tobacco). The results can be considered to be an alternative approach to the development of plastid transformation technologies for recalcitrant species using a transformable intermediary (“clipboard”) host.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Abbreviations

aadA:

Gene of aminoglycoside-3′-adenylyntransferase

ITS:

Internal transcribed spacer

ndhD :

Gene of NADH-dehydrogenase ND4 subunit

PEG:

Polyethylene glycol

psbA:

Gene of D1-protein (PS II)

rbcL:

Rubisco large subunit gene

RBS:

Ribosome binding site

rpl22:

Gene of 50S ribosome protein CL22

rpl32:

Gene of 50S ribosome protein CL32

rps19:

Gene of 30S ribosome protein CS19

trnL:

Gene of Leu-tRNA

uidA:

Gene of β-glucuronidase

UTR:

Untranslated region

References

  1. Arai Y, Shikanai T, Doi Y, Yoshida S, Yamaguchi I, Nakashita H (2004) Production of polyhydroxybutyrate by polycistronic expression of bacterial genes in tobacco plastid. Plant Cell Physiol 45(9):1176–1184

  2. Babiychuk E, Schantz R, Cherep N, Weil J-H, Gleba Y, Kushnir S (1995) Alterations in chlorophyll a/b binding protein in Solanaceae cybrids. Mol Gen Genet 249:648–654

  3. Birky C.W. (1995) Uniparental inheritance of mitochondrial and chloroplast genes: mechanism and evolution. Proc Natl Acad Sci USA 92:11331–11338

  4. Cheung WY, Hubert N, Landry BS (1993) A simple and rapid DNA microextraction method for plant, animal and insect suitable for RAPD and other PCR analyses. PCR Methods Appl 3:69–70

  5. Corneilly S, Lutz K, Svab Z, Maliga P (2001) Efficient elimination of selectable marker genes from the plastid genome by the CRE-lox site-specific recombination system. 27(2):171–178

  6. Daniell H, Muthukumar B, Lee SB (2001a) Marker free transgenic plants: engineering the chloroplast genome without the use of antibiotic selection. Curr Genet 39:109–116

  7. Daniell H, Lee SB, Panchal T, Wiebe PO (2001b) Expression of the native cholera toxin B subunit gene and assembly of functional oligomers in transgenic tobacco chloroplasts. J Mol Biol 311:1001–1009

  8. D’Arcy W (1991) The Solanaceae since 1976, with a review of its biogeography. In: Hawkes, Lester, Nee, Estrada (eds) Solanaceae III: taxonomy, chemistry, evolution. Royal Botanical Gardens, Kew, Richmond, Surrey, UK, pp 75–137

  9. DeCosa B, Moar W, Lee SB, Miller M, Daniell H (2001) Hyper-expression of Bt Cry2Aa2 operon in chloroplasts leads to formation of insecticidial crystals. Nat Biotechnol 19:71–74

  10. Dufourmantel N, Pelissier B, Garcon F, Peltier G, Ferullo JM, Tissot G (2004) Generation of fertile transplastomic soybean. Plant Mol Biol 55:479–489

  11. Dufourmantel N, Tissot G, Goutorbe F, Garcon F, Muhr C, Jansens S, Pelissier B, Peltier G, Dubald M (2005) Generation and analysis of soybean plastid transformants expressing Bacillus thuringiensis Cry1A6 protein. Plant Mol Biol 58:659–668

  12. Fromm H, Edelman M, Aviv D, Galun E (1987) The molecular basis of rDNA-dependent spectinomycin resistance in Nicotiana chloroplasts. EMBO J 6:3233–3237

  13. Hagemann R, Hagemann MM, Bock R (1998). Extranuclear Inheritance: plastid genetics. Prog Bot 59:108–130

  14. Hajdukiewicz PTJ, Gilbertson L, Staub JM (2001) Multiple pathways for Cre/lox-mediated recombination in plastids. 27(2):161–170

  15. Hou BK, Zhou YH, Wan LH, Zhang ZL, Shen GF, Chen ZH, Hu ZM (2003) Chloroplast transformation in oilseed rape. Transgenic Res 12:111–114

  16. Kao KN, Michayluk MR (1975) Nutritional requirements for growth of Vicia hajastana cells and protoplasts at a very low population density in liquid media. Planta 126:105–110

  17. Klaus SMJ, Huang F-C, Golds TJ, Koop H-U (2004) Generation of marker-free plastid transformants using a transiently cointegrated selection gene. Nature Biotechnol 22:225–229

  18. Koop H, Steinmuller K, Wagner H, Roesler C, Eibl C, Sacher L (1996) Integration of foreign sequences into the tobacco plastome via polyethylene glycol-mediated protoplast transformation. Planta 199:193–201

  19. Kumar S, Dhingra A, Daniell H (2004a) Plastid-expressed betaine aldehyde dehydrogenase gene in carrot cultured cells, roots, and leaves confers enhanced salt tolerance. Plant Physiol 136:2843–2854

  20. Kumar S, Dhingra A, Daniell H (2004b) Stable transformation of the cotton plastid genome and maternal inheritance of transgenes. Plant Mol Biol 56:203–216

  21. Kushnir S, Shlumukov L, Pogrebnyak N, Berger S, Gleba Y (1987) Functional cybrid plants possessing a Nicotiana genome and an Atropa plastome. Mol Gen Genet 209:159–163

  22. Lelivelt CL, McCabe MS, Newell CA, Desnoo CB, van Dun KM, Birch-Machin I, Gray JC, Mills KH, Nugent JM (2005) Stable plastid transformation in lettuce (Lactuca sativa L.). Plant Mol Biol 58(6):763–774

  23. Lossl A, Eibl C, Harloff H-J, Jung C, Koop H-U (2003) Polyester synthesis in transplastomic tobacco (Nicotiana tabacum L.): significant contents of polyhydroxybutyrate are associated with growth reduction. Plant Cell Rep 21:891–899

  24. Medgyesy P, Menczel L, Maliga P (1980) The use of cytoplasmic streptomycin resistance: chloroplast transfer from Nicotiana tabacum into Nicotiana sylvestris and isolation of their somatic hybrids. Mol Gen Genet 179:693–696

  25. McBride KE, Svab Z, Schaaf DJ, Hogan PS, Stalker DM, Maliga P (1995) Amplification of a chimeric Bacillus gene in chloroplasts leads to an extraordinary level of an insecticidal protein in tobacco. Biotechnology 13:362–365

  26. Menczel L, Nagy F, Kiss ZR, Maliga P (1981) Streptomycin resistant and sensitive somatic hybrids of Nicotiana tabacum Nicotiana knightiana: corellation of resistance to N. tabacum plastids. Theor Appl Genet 59:191–195

  27. Murashige T., Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:191–195

  28. Nugent GD, Ten Have H, van der Gulik A, Pix JJ, Uijtewaal BA, Mordhorst AP (2005) Plastid transformants of tomato selected using mutations affecting ribosome structure. Plant Cell Rep 24(6):341–349

  29. Ruf S, Hermann M, Bergers I, Carrer H, Bock R (2001) Stable genetic transformation of tomato plastids and expression of a foreign protein in fruit. Nat Biotechnol 19:870–875

  30. Sidkar SR, Serino G, Chaudhuri S, Maliga P (1998) Plastid transformation in Arabidopsis thaliana. Plant Cell Rep 18:20–24

  31. Sidorov VA, Kasten D, Pang SZ, Hajdukiewicz PTJ., Stab JM, Nehra N.S (1999) Stable chloroplast transformation in potato: use of green fluorescent protein as a plastid marker. Plant J 19:09–216

  32. Skarjinskaia M, Svab Z, Maliga P (2003) Plastid transformation in Lesquerella fendleri, an oilseed Brassicacea. Transgenic Res 12:115–122

  33. Staub JM, Garcia B, Graves J, Hajdukiewicz PTJ, Hunter P, Nehra N, Paradkar V, Schlitter M, Carroll JA, Spatola L, Ward D, Ye G, Russell DA (2000) High-yield production of a human therapeutic protein in tobacco chloroplasts. Nat Biotechnol 18:333–338

  34. Svab Z, Maliga P (1991) Mutation proximal to the tRNA binding region of the Nicotiana plastid 16S rRNA confers resistance to spectinomycin. Mol Gen Genet 228:316–319

  35. Svab Z, Harper EC, Jones JDG, Maliga P (1990) Aminoglycoside-3′-adenylyntransferase confers resistance to spectinomycin and streptomycin in Nicotiana tabacum. Plant Mol Biol 14:197–205

  36. Sytnyk S, Komarnytsky I, Gleba Y, Kuchuk N (2005) Transfer of transformed chloroplasts from Nicotiana tabacum to the Lycium barbarum plants. Cell Biol Int 29:71–75

  37. Thanh ND, Medgyesy P (1989) Limited chloroplast gene transfer via recombination overcomes plastome–genome incompatibility between Nicotiana tabacum and Solanum tuberosum. Plant Mol Biol 12:87–93

  38. Thanh ND, Pay A, Smith MA, Medgyesy P, Marton L (1988) Intertribal chloroplast transfer by protoplast fusion between Nicotiana tabacum and Salpiglossis sinuata. Mol Gen Genet 213:186–190

  39. Zubko M, Zubko E, Zuilen K, Meyer P, Day A. (2004) Stable transformation of petunia plastids. Transgenic Res 13: 523–530

Download references

Acknowledgments

The authors are grateful to Prof. Dr. H.-U. Koop, Munich University, Munich, Germany, and Dr. P. Medgyesy, Biological Research Centre, Szeged, Hungary, for providing research materials used in this study. We also thank Bob Erwin (LSBC, CA) for helpful suggestion and critical reading of the manuscript.

Author information

Correspondence to Nikolay Kuchuk.

Additional information

Communicated by R. Hagemann

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Kuchuk, N., Sytnyk, K., Vasylenko, M. et al. Genetic transformation of plastids of different Solanaceae species using tobacco cells as organelle hosts. Theor Appl Genet 113, 519–527 (2006). https://doi.org/10.1007/s00122-006-0318-y

Download citation

Keywords

  • Plastid Genome
  • Plastid Transformation
  • Solanaceae Family
  • aadA Gene
  • Solanaceae Species