Skip to main content
Log in

Microsatellite identification and characterization in peanut (A. hypogaea L.)

  • Original Paper
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

A major constraint to the application of biotechnology to the improvement of the allotetraploid peanut, or groundnut (Arachis hypogaea L.), has been the paucity of polymorphism among germplasm lines using biochemical (seed proteins, isozymes) and DNA markers (RFLPs and RAPDs). Six sequence-tagged microsatellite (STMS) markers were previously available that revealed polymorphism in cultivated peanut. Here, we identify and characterize 110 STMS markers that reveal genetic variation in a diverse array of 24 peanut landraces. The simple-sequence repeats (SSRs) were identified with a probe of two 27,648-clone genomic libraries: one constructed using PstI and the other using Sau3AI/BamHI. The most frequent, repeat motifs identified were ATT and GA, which represented 29% and 28%, respectively, of all SSRs identified. These were followed by AT, CTT, and GT. Of the amplifiable primers, 81% of ATT and 70.8% of GA repeats were polymorphic in the cultivated peanut test array. The repeat motif AT showed the maximum number of alleles per locus (5.7). Motifs ATT, GT, and GA had a mean number of alleles per locus of 4.8, 3.8, and 3.6, respectively. The high mean number of alleles per polymorphic locus, combined with their relative frequency in the genome and amenability to probing, make ATT and GA the most useful and appropriate motifs to target to generate further SSR markers for peanut.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Akkaya M, Shoemaker R, Specht J, Bhagwat A, Cregan P (1995) Integration of simple sequence repeat DNA markers into a soybean linkage map. Crop Sci 35:1439–1445

    CAS  Google Scholar 

  • Anderson J, Churchill G, Autrique J, Tanksley SD, Sorrells ME (1993) Optimizing parental selection for genetic linkage maps. Genome 36:181–186

    CAS  Google Scholar 

  • Areshchenkova T, Ganal M (2002) Comparative analysis of polymorphism and chromosomal location of tomato microsatellite markers isolated from different sources. Theor Appl Genet 104:229–235

    Article  Google Scholar 

  • Bell C, Ecker J (1994) Assignment of 30 microsatellite loci to the linkage map of Arabidopsis. Genomics 19:137–144

    Article  CAS  PubMed  Google Scholar 

  • Bianchi-Hall C, Keys R, Stalker H (1991) Use of protein profiles to characterize peanut cultivars. Newsl Assoc Official Seed Anal 65:25–26

    Google Scholar 

  • Burow MD, Simpson CE, Starr JL, Paterson AH (2001) Transmission genetics of chromatin from a synthetic amphidiploid to cultivated peanut (Arachis hypogaea L.): broadening the gene pool of a monophyletic polyploid species. Genetics 159:823–837

    CAS  PubMed  Google Scholar 

  • Burr B, Burr F, Thompson K, Albertsen M, Stuber C (1988) Gene mapping with recombinant inbreds in maize. Genetics 118:519–526

    CAS  PubMed  Google Scholar 

  • Burstin J, Deniot G, Potier J, Weinachter C, Aubert G, Baranger A (2001) Microsatellite polymorphism in Pisum sativum. Plant Breed 102:311–317

    Article  Google Scholar 

  • Cobb BD, Clarkson JM (1994) A simple procedure for optimising the polymerase chain reaction (PCR) using modified Taguchi methods. Nucleic Acids Res 22:3801–3805

    CAS  PubMed  Google Scholar 

  • Cregan P, Jarvik T, Bush A, Shoemaker R, Lark K, Kahler A, Van Toai T, Lohnes D, Chung J, Specht J (1999) An integrated genetic linkage map of the soybean genome. Crop Sci 39:1464–1490

    CAS  Google Scholar 

  • Daly MJ, Lincoln SE, Lander ES (1991) “PRIMER”, unpublished Software, Whitehead Institute / MIT Center for Genome Research

  • Echt C, May-Marquardt P (1997) Survey of microsatellite DNA in pine. Genome 40:9–17

    CAS  PubMed  Google Scholar 

  • Grieshammer U, Wynne JC (1990) Isozyme variability in mature seeds of U.S. peanut cultivars and collections. Peanut Sci 18:72–75

    Google Scholar 

  • Gruenbaum Y, Naveh-Many T, Cedar H, Razin A (1981) Sequence specificity of methylation in higher plant DNA. Nature 292:860–862

    CAS  PubMed  Google Scholar 

  • Halward TM, Stalker HT, LaRue EA, Kochert G (1991) Genetic variation detectable with molecular markers among unadapted germ-plasm resources of cultivated peanut and related wild species. Genome 34:1013–1020

    CAS  Google Scholar 

  • Halward T, Stalker T, LaRue E, Kochert G (1992) Use of single-primer DNA amplifications in genetic studies of peanut (Arachis hypogaea L.). Plant Mol Biol 18:315–325

    CAS  PubMed  Google Scholar 

  • Hopkins M, Casa A, Wang T, Mitchell S, Dean R, Kochert G, Kresovich S (1999) Discovery and characterization of polymorphic simple sequence repeats (SSRs) in peanut. Crop Sci 39:1243–1247

    Google Scholar 

  • Hüttel B, Winter P, Weising K, Choumane W, Weigand F, Kahl G (1999) Sequence-tagged microsatellite site markers for chickpea (Cicer arietinum L.). Genome 42:210–217

    PubMed  Google Scholar 

  • Innan H, Terauchi R, Miyashita N (1997) Microsatellite polymorphism in natural populations of the wild plant Arabidopsis thaliana. Genetics 146:1441–1452

    CAS  PubMed  Google Scholar 

  • Kochert G, Halward T, Branch WD, Simpson CE (1991) RFLP variability in peanut (Arachis hypogaea L.) cultivars and wild species. Theor Appl Genet 81:565–570

    CAS  Google Scholar 

  • Krakowski K, Brunfille J, Seto J, Baskin D, Seto D (1995) Rapid purification of fluorescent dye-labeled products in a 96-well format for high-throughput automated DNA sequencing. Nucleic Acids Res 23:4930–4931

    PubMed  Google Scholar 

  • Lacks G, Stalker H (1993) Isozyme analyses of Arachis species and interspecific hybrids. Peanut Sci 20:76–81

    CAS  Google Scholar 

  • Lagercrantz U, Ellegren H, Andersson L (1993) The abundance of various polymorphic microsatellite motifs differs between plants and vertebrates. Nucleic Acids Res 21:1111–1115

    CAS  PubMed  Google Scholar 

  • Lanham P, Forster B, McNicol P, Moss J, Powell W (1994) Seed storage protein variation in Arachis species. Genome 37:487–496

    CAS  Google Scholar 

  • Love J, Knight A, McAleer M, Todd J (1990) Towards construction of a high-resolution map of the mouse genome using PCR-analyzed microsatellites. Nucleic Acids Res 18:4123–4130

    CAS  PubMed  Google Scholar 

  • Marra MA, Kucaba TA, Dietrich NL, Green ED, Brownstein B, Wilson RK, McDonald KM, Hillier LW, McPherson JD, Waterson RH (1997) High throughput fingerprinting analysis of large-insert clones. Genome Res 7:1072–1084

    CAS  PubMed  Google Scholar 

  • Morgante M, Olivieri A (1993) PCR-amplified microsatellites as markers in plant genetics. Plant J 3:175–182

    CAS  PubMed  Google Scholar 

  • Paik-Ro OG, Smith RL, Knauft DA (1992) Restriction fragment length polymorphism evaluation of six peanut species within the Arachis section. Theor Appl Genet 84:201–208

    CAS  Google Scholar 

  • Pepin L, Amigues Y, Lepingle A, Berthier J, Bensaid A, Vaiman D (1995) Sequence conservation of microsatellites between Bos taurus (cattle), Capra nircus (goat) and related species. Examples of use in parentage testing and phylogeny analysis. Heredity 74:53–61

    CAS  PubMed  Google Scholar 

  • Saghai-Maroof MA, Biyashev RM, Yang GP, Zhang Q, Allard RW (1994) Extraordinarily polymorphic microsatellite DNA in barley: species diversity, chromosomal locations, and population dynamics. Proc Natl Acad Sci USA 99:5466–5470

    Google Scholar 

  • Sambrook J, Fritsch E, Maniatis T (1989) Molecular cloning. A laboratory manual, 2nd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.

  • Savoy C (1976) Peanut (Arachis hypogaea L.). Seed protein characterization and genotype sample classification using polyacrylamide gel electrophoresis. Biochem Biophys Res Commun 68:886–893

    CAS  PubMed  Google Scholar 

  • Smulders M, Bredemeijer G, Rus-Kortekaas W, Arens P, Vosman B (1997) Use of short microsatellites from database sequences to generate polymorphisms among Lycopersicon esculentum cultivars and accessions of other Lycopersicon species. Theor Appl Genet 97:264–272

    Article  Google Scholar 

  • Song Q, Fickus E, Cregan P (2002) Characterization of trinucleotide SSR motifs in wheat. Theor Appl Genet 104:286–293

    Article  Google Scholar 

  • Tanksley S, Miller J, Paterson A, Bernatzky R (1987) Molecular mapping of plant chromosomes. In: Gustafson J, Appels R (eds) Chromosome structure and function. Plenum Press, New York, pp 157–173

  • Tombs MP (1963) Variant forms of arachin. Nature 200:1321–1322

    CAS  Google Scholar 

  • Udupa S, Robertson L, Weigand F, Baum M, Kahl G (1999) Allelic variation at (TAA)n microsatellite loci in a world collection of chickpea (Cicer arietinum L.). Mol Gen Genet 261:354–363

    Google Scholar 

  • Wang Z, Weber J, Zhong G, Tanksley S (1994) Survey of short tandem DNA repeats. Theor Appl Genet 88:1–6

    CAS  Google Scholar 

  • Weber J (1990) Informativeness of human (dC-dA)n × (dG-dT)n polymorphisms. Genomics 7:524–530

    PubMed  Google Scholar 

  • Yu K, Park S, Poysa V (1999) Abundance and variation of microsatellite DNA sequences in beans (Phaseolus and Vigna). Genome 42:27–34

    CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Scott Lee, Manisha Singh, and Shiwanand Varma for technical assistance. The project was funded under a USAID linkage grant to ICRISAT.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. E. Ferguson.

Additional information

Communicated by J.S. Heslop-Harrison

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ferguson, M.E., Burow, M.D., Schulze, S.R. et al. Microsatellite identification and characterization in peanut (A. hypogaea L.). Theor Appl Genet 108, 1064–1070 (2004). https://doi.org/10.1007/s00122-003-1535-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-003-1535-2

Keywords

Navigation