Advertisement

Der Urologe

pp 1–6 | Cite as

Die Rolle von Druck und Temperatur bei Ureterorenoskopie und perkutaner Nephrolitholapaxie

Druck- und Temperaturveränderungen im Rahmen der Steintherapie
  • F. StrittmatterEmail author
  • M. J. Bader
Leitthema
  • 15 Downloads

Zusammenfassung

Die Ureterorenoskopie (URS) und perkutane Nephrolitholapaxie (PCNL) stellen als minimal-invasive Verfahren die Standardverfahren bei der Behandlung von Nieren- und Harnleitersteinen dar. Um eine hinreichende Sicht zu gewährleisten, ist bei beiden Verfahren eine optimale/suffiziente Spülung erforderlich. Dabei muss der durch Spüldruck und Spülmenge beeinflusste intrarenale Druck (IRP) beachtet werden. Kommt es zu pathologisch erhöhten intrarenalen Drücken, kann dies zu irreversiblen Schäden der Niere führen. Zur Fragmentierung von Steinen werden häufig Laser eingesetzt. Studien haben gezeigt, dass die Laserenergie zu einer Temperaturerhöhung führen und dass die dadurch erzeugten thermischen Effekte die Niere schädigen können. Dieser Beitrag soll dem Operateur einen Überblick darüber geben, was Temperatur und Druckveränderungen im Rahmen der URS und PCNL bewirken können, und wie man Schäden vermeiden kann.

Schlüsselwörter

Intrarenaler Druck Reflux, pyelorenaler Steintherapie Nierenschäden Infektionen 

Abkürzungen

fURS

Flexible Ureterorenoskopie

HOLEP

Holmium:Yttrium-Aluminium-Garnet; Ho:YAG

IRP

Intrarenaler Druck

PCNL

Perkutane Nephrolitholapaxie

PRR

Pyelorenaler Reflux

SIRS

Systemisches inflammatorisches Response-Syndrom

sURS

Semirigide Ureterorenoskopie

Role of pressure and temperature in ureterorenoscopy and percutaneous nephrolitholapaxy

Pressure and temperature changes during stone treatment

Abstract

Ureterorenoscopy and percutaneous nephrolitholapaxy are minimally invasive procedures and are the standard procedures for the treatment of kidney stones and ureteral calculi. To achieve an adequate view, in both methods an optimal and sufficient irrigation flow is necessary. The intrarenal pressure is influenced by the irrigation pressure and irrigation volume and has to be controlled. Pathologically elevated intrarenal pressure can lead to irreversible damage of the kidneys. Lasers are frequently used for stone fragmentation. It has been shown in studies that the laser energy can lead to an increase in the temperature and that thermal effects can also damage the kidneys. This article provides the surgeon with an overview about the effects of temperature and pressure changes during ureterorenoscopy and percutaneous nephrolitholapaxy and how damages can be avoided.

Keywords

Intrarenal pressure Reflux, pyelorenal Stone treatment Kidney damage Infections 

Notes

Einhaltung ethischer Richtlinien

Interessenkonflikt

F. Strittmatter und M.J. Bader geben an, dass kein Interessenkonflikt besteht.

Für diesen Beitrag wurden von den Autoren keine Studien an Menschen oder Tieren durchgeführt. Für die aufgeführten Studien gelten die jeweils dort angegebenen ethischen Richtlinien.

Literatur

  1. 1.
    Alken P (2018) Intracorporeal lithotripsy. Urolithiasis 46(1):19–29CrossRefPubMedGoogle Scholar
  2. 2.
    Rassweiler J, Rassweiler MC, Klein J (2016) New technology in ureteroscopy and percutaneous nephrolithotomy. Curr Opin Urol 26(1):95–106CrossRefPubMedGoogle Scholar
  3. 3.
    Geavlete P, Georgescu D, Nita G et al (2006) Complications of 2735 retrograde semirigid ureteroscopy procedures: a single-center experience. J Endourol 20(3):179–185CrossRefPubMedGoogle Scholar
  4. 4.
    Michel MS, Trojan L, Rassweiler JJ (2007) Complications in percutaneous nephrolithotomy. Eur Urol 51(4):899–906 (discussion 906)CrossRefPubMedGoogle Scholar
  5. 5.
    Whitaker RH (1979) An evaluation of 170 diagnostic pressure flow studies of the upper urinary tract. J Urol 121(5):602–604CrossRefPubMedGoogle Scholar
  6. 6.
    Tokas T, Herrmann TRW, Skolarikos A et al (2019) Pressure matters: intrarenal pressures during normal and pathological conditions, and impact of increased values to renal physiology. World J Urol 37(1):125–131CrossRefPubMedGoogle Scholar
  7. 7.
    Kukreja RA, Desai MR, Sabnis RB et al (2002) Fluid absorption during percutaneous nephrolithotomy: does it matter? J Endourol 16(4):221–224CrossRefPubMedGoogle Scholar
  8. 8.
    Stenberg A, Bohman SO, Morsing P et al (1988) Back-leak of pelvic urine to the bloodstream. Acta Physiol Scand 134(2):223–234CrossRefPubMedGoogle Scholar
  9. 9.
    Schultz RE, Hanno PM, Wein AJ et al (1983) Percutaneous ultrasonic lithotripsy: choice of irrigant. J Urol 130(5):858–860CrossRefPubMedGoogle Scholar
  10. 10.
    Sinclair JF, Hutchison A, Baraza R et al (1985) Absorption of 1.5 % glycine after percutaneous ultrasonic lithotripsy for renal stone disease. Br Med J 291(6497):691–692CrossRefGoogle Scholar
  11. 11.
    Thomsen HS, Dorph S, Olsen S (1981) Pyelorenal backflow in normal and ischemic rabbit kidneys. Invest Radiol 16(3):206–214CrossRefPubMedGoogle Scholar
  12. 12.
    Thomsen HS, Larsen S, Talner LB (1982) Pyelorenal backflow during retrograde pyelography in normal and ischemic porcine kidneys. A radiologic and pathoanatomic study. Eur Urol 8(5):291–297CrossRefPubMedGoogle Scholar
  13. 13.
    Carson CC, Nesbitt JA (1985) Peritoneal extravasation during percutaneous lithotripsy. J Urol 134(4):725–727CrossRefPubMedGoogle Scholar
  14. 14.
    Jung HU, Frimodt-Moller PC, Osther PJ et al (2006) Pharmacological effect on pyeloureteric dynamics with a clinical perspective: a review of the literature. Urol Res 34(6):341–350CrossRefPubMedGoogle Scholar
  15. 15.
    Schwalb DM, Eshghi M, Davidian M et al (1993) Morphological and physiological changes in the urinary tract associated with ureteral dilation and ureteropyeloscopy: an experimental study. J Urol 149(6):1576–1585CrossRefPubMedGoogle Scholar
  16. 16.
    Li X, Liu M, Bedja D et al (2012) Acute renal venous obstruction is more detrimental to the kidney than arterial occlusion: implication for murine models of acute kidney injury. Am J Physiol Renal Physiol 302(5):F519–F525CrossRefPubMedGoogle Scholar
  17. 17.
    Park Y, Hirose R, Dang K et al (2008) Increased severity of renal ischemia-reperfusion injury with venous clamping compared to arterial clamping in a rat model. Surgery 143(2):243–251CrossRefPubMedGoogle Scholar
  18. 18.
    Cao Z, Yu W, Li W et al (2015) Oxidative damage and mitochondrial injuries are induced by various irrigation pressures in rabbit models of mild and severe hydronephrosis. PLoS ONE 10(6):e127143CrossRefPubMedGoogle Scholar
  19. 19.
    Meng H, Chen S, Chen G et al (2013) Renal subcapsular hemorrhage complicating ureterolithotripsy: an unknown complication of a known day-to-day procedure. Urol Int 91(3):335–339PubMedGoogle Scholar
  20. 20.
    Xu L, Li G (2013) Life-threatening subcapsular renal hematoma after flexible ureteroscopic laser lithotripsy: treatment with superselective renal arterial embolization. Urolithiasis 41(5):449–451CrossRefPubMedGoogle Scholar
  21. 21.
    Kreydin EI, Eisner BH (2013) Risk factors for sepsis after percutaneous renal stone surgery. Nat Rev Urol 10(10):598–605CrossRefPubMedGoogle Scholar
  22. 22.
    Omar M, Noble M, Sivalingam S et al (2016) Systemic inflammatory response syndrome after percutaneous nephrolithotomy: a randomized single-blind clinical trial evaluating the impact of irrigation pressure. J Urol 196(1):109–114CrossRefPubMedGoogle Scholar
  23. 23.
    Malhotra SK, Khaitan A, Goswami AK et al (2001) Monitoring of irrigation fluid absorption during percutaneous nephrolithotripsy: the use of 1 % ethanol as a marker. Anaesthesia 56(11):1103–1106CrossRefPubMedGoogle Scholar
  24. 24.
    Xu S, Shi H, Zhu J et al (2014) A prospective comparative study of haemodynamic, electrolyte, and metabolic changes during percutaneous nephrolithotomy and minimally invasive percutaneous nephrolithotomy. World J Urol 32(5):1275–1280CrossRefPubMedGoogle Scholar
  25. 25.
    Tokas T, Skolarikos A, Herrmann TRW et al (2019) Pressure matters 2: intrarenal pressure ranges during upper-tract endourological procedures. World J Urol 37(1):133–142CrossRefPubMedGoogle Scholar
  26. 26.
    Nagele U, Horstmann M, Sievert KD et al (2007) A newly designed amplatz sheath decreases intrapelvic irrigation pressure during mini-percutaneous nephrolitholapaxy: an in-vitro pressure-measurement and microscopic study. J Endourol 21(9):1113–1116CrossRefPubMedGoogle Scholar
  27. 27.
    Nagele U, Walcher U, Bader M et al (2015) Flow matters 2: How to improve irrigation flow in small-calibre percutaneous procedures-the purging effect. World J Urol 33(10):1607–1611CrossRefPubMedGoogle Scholar
  28. 28.
    Landman J, Venkatesh R, Ragab M et al (2002) Comparison of intrarenal pressure and irrigant flow during percutaneous nephroscopy with an indwelling ureteral catheter, ureteral occlusion balloon, and ureteral access sheath. Urology 60(4):584–587CrossRefPubMedGoogle Scholar
  29. 29.
    Ng YH, Somani BK, Dennison A et al (2010) Irrigant flow and intrarenal pressure during flexible ureteroscopy: the effect of different access sheaths, working channel instruments, and hydrostatic pressure. J Endourol 24(12):1915–1920CrossRefPubMedGoogle Scholar
  30. 30.
    Deng X, Song L, Xie D et al (2016) A novel flexible ureteroscopy with intelligent control of renal pelvic pressure: an initial experience of 93 cases. J Endourol 30(10):1067–1072CrossRefPubMedGoogle Scholar
  31. 31.
    Fichtner J, Boineau FG, Lewy JE et al (1994) Congenital unilateral hydronephrosis in a rat model: continuous renal pelvic and bladder pressures. J Urol 152(2 Pt 2):652–657CrossRefPubMedGoogle Scholar
  32. 32.
    Huang J, Xie D, Xiong R et al (2018) The application of suctioning flexible ureteroscopy with intelligent pressure control in treating upper urinary tract calculi on patients with a solitary kidney. Urology 111:44–47CrossRefPubMedGoogle Scholar
  33. 33.
    Wilson WT, Preminger GM (1990) Intrarenal pressures generated during flexible deflectable ureterorenoscopy. J Endourol 4(2):135–141CrossRefGoogle Scholar
  34. 34.
    Jung H, Norby B, Frimodt-Moller PC et al (2008) Endoluminal isoproterenol irrigation decreases renal pelvic pressure during flexible ureterorenoscopy: a clinical randomized, controlled study. Eur Urol 54(6):1404–1413CrossRefPubMedGoogle Scholar
  35. 35.
    Jung HU, Jakobsen JS, Frimodt-Moeller PC et al (2008) Irrigation with isoproterenol during ureterorenoscopy causes no systemic side-effects. Scand J Urol Nephrol 42(2):158–163CrossRefPubMedGoogle Scholar
  36. 36.
    Hein S, Petzold R, Suarez-Ibarrola R et al (2019) Thermal effects of Ho:YAG laser lithotripsy during retrograde intrarenal surgery and percutaneous nephrolithotomy in an ex vivo porcine kidney model. World J Urol.  https://doi.org/10.1007/s00345-019-02808-5 PubMedGoogle Scholar
  37. 37.
    Hein S, Petzold R, Schoenthaler M et al (2018) Thermal effects of Ho: YAG laser lithotripsy: real-time evaluation in an in vitro model. World J Urol 36(9):1469–1475CrossRefPubMedGoogle Scholar
  38. 38.
    Maxwell AD, MacConaghy B, Harper JD et al (2019) Simulation of laser lithotripsy-induced heating in the urinary tract. J Endourol 33(2):113–119CrossRefPubMedGoogle Scholar
  39. 39.
    Aldoukhi AH, Hall TL, Ghani KR et al (2018) Caliceal fluid temperature during high-power holmium laser lithotripsy in an in vivo porcine model. J Endourol 32(8):724–729CrossRefPubMedGoogle Scholar
  40. 40.
    Kallidonis P, Kamal W, Panagopoulos V et al (2016) Thulium Laser in the Upper Urinary Tract: Does the Heat Generation in the Irrigation Fluid Pose a Risk? Evidence from an In Vivo Experimental Study. J Endourol 30(5):555–559CrossRefPubMedGoogle Scholar

Copyright information

© Springer Medizin Verlag GmbH, ein Teil von Springer Nature 2019

Authors and Affiliations

  1. 1.Urologische Klinik und PoliklinikLMU München, Campus GroßhadernMünchenDeutschland
  2. 2.UroClinic München an der OperMünchenDeutschland

Personalised recommendations