Advertisement

Der Urologe

pp 1–6 | Cite as

Kaltes atmosphärisches Plasma für die urologische Tumortherapie

  • N. Gelbrich
  • M. B. Stope
  • M. Burchardt
Übersichten

Zusammenfassung

Kaltes atmosphärisches Plasma (CAP) ist ein hochreaktives, ionisiertes Gasgemisch aus elektrisch geladenen Teilchen, Radikalen und Photonen sowie elektromagnetischer Strahlung. Aufgrund der hohen Energie und der hohen Reaktivität der Plasmakomponenten werden physikalische Plasmen auch als 4. Aggregatzustand bezeichnet. CAP hat eine antimikrobielle, immunmodulierende, antiinflammatorische und wundheilungsfördernde Wirkung auf biologische Systeme. Aufgrund seiner antineoplastischen Eigenschaften stellt es überdies eine potentielle intraoperative Anwendungsmöglichkeit zur Behandlung von Wund- und Resektionsränder in der aktuellen Therapie urologischer Tumoren dar. Durch eine Behandlung mit CAP kann das Wachstum von urologischen Tumorzellen effektiv gehemmt werden. Vorbehaltlich weiterer Untersuchungen zu Wirkmechanismen, aber auch zur Eindringtiefe in Gewebe und der Wirkung auf physiologisch gesundes Gewebe eröffnet die CAP-Behandlung neue innovative Optionen in der urologischen Onkologie. Der intraoperative Einsatz von CAP wäre insbesondere in Bereichen denkbar, die nahe an kritischen Strukturen (Nerven, andere Organe) liegen und daher nur mit hohem Risiko chirurgisch resektiert werden könnten. Der vorliegende Übersichtsartikel fasst aktuelle Untersuchungen bezüglich der biologischen Wirkungen von CAP auf urologische Tumorzellen zusammen.

Schlüsselwörter

Physikalisches Plasma Onkologische Therapie Intraoperativ Uro-Onkologie Neue Therapie 

Cold atmospheric plasma for the treatment of urological tumors

Abstract

Cold atmospheric plasma (CAP) is a highly reactive ionized physical state consisting of electrically charged particles, radicals and photons as well as electromagnetic radiation. Due to the high energy and reactivity of plasma components, physical plasmas are also referred to as the 4th aggregate state. In biological systems, CAP promotes antimicrobial, immunomodulatory, anti-inflammatory, and wound-healing effects. Moreover, CAP bears antineoplastic properties which may be applied as a potential intraoperative option in the treatment of wound and resection margins during surgery of urological tumors. Some properties such as the penetration depth in various biological tissues, the effect on physiological healthy tissue, and the molecular mode of action regarding signalling and effector pathways are the subject of further investigation. CAP treatment effectively attenuates malignant cell growth. As an intraoperative application, CAP may represent a promising option particularly for the treatment of tissue regions that are close to critical structures (e. g., nerves, adjacent organs). The present review article summarizes the current status of CAP-related studies in the field of urological oncology.

Keywords

Physical plasma Oncological therapy Intraoperative Uro-oncology Novel therapy 

Notes

Einhaltung ethischer Richtlinien

Interessenkonflikt

N. Gelbrich, M. B. Stope und M. Burchardt geben an, dass kein Interessenkonflikt besteht.

Dieser Beitrag beinhaltet keine von den Autoren durchgeführten Studien an Menschen oder Tieren.

Literatur

  1. 1.
    Wiegand C, Elsner P (2017) Plasma medicine – cold plasma for treatment of skin infections. Aktuelle Derm 43:339–345CrossRefGoogle Scholar
  2. 2.
    Gümbel D, Daeschlein G, Ekkernkamp A et al (2017) Cold atmospheric plasma in orthopaedic and urologic tumor therapy. Gms Hyg Infect Control 12:Doc10PubMedPubMedCentralGoogle Scholar
  3. 3.
    Weiss M, Gümbel D, Hanschmann E et al (2015) Cold atmospheric plasma treatment induces anti-proliferative effects in prostate cancer cells by redox and apoptotic signaling pathways. PLoS ONE 10:e130350CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Kramer A, Bekeschus S, Matthes R et al (2015) Cold physical plasmas in the field of hygiene – relevance, significance, and future applications. Plasma Process Polym 12:1410–1422CrossRefGoogle Scholar
  5. 5.
    Brand CU, Blum A, Schlegel A et al (1998) Application of argon plasma coagulation in skin surgery. Dermatology (Basel) 197:152–157CrossRefGoogle Scholar
  6. 6.
    Canard JM, Védrenne B (2001) Clinical application of argon plasma coagulation in gastrointestinal endoscopy: has the time come to replace the laser? Endoscopy 33:353–357CrossRefPubMedGoogle Scholar
  7. 7.
    Rehman MU, Jawaid P, Uchiyama H et al (2016) Comparison of free radicals formation induced by cold atmospheric plasma, ultrasound, and ionizing radiation. Arch Biochem Biophys 605:19–25CrossRefPubMedGoogle Scholar
  8. 8.
    Bender C, Stope MB, Kramer A (2018) Application in veterinarian medicine. In: Metelmann HR, von Woedtke T, Weltmann KD (Hrsg) Comprehensive clinical plasma medicine – treating with cold physical plasma. Springer, Berlin, Heidelberg. ISBN 978-3319676265Google Scholar
  9. 9.
    Li X, Li Y, Zhang P et al (2016) Improved performance of a barrier-discharge plasma jet biased by a direct-current voltage. Sci Rep 6:35653CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    McKay K, Salter TL, Bowfield A et al (2014) Comparison of three plasma sources for ambient desorption/ionization mass spectrometry. J Am Soc Mass Spectrom 25(9):1528–1537CrossRefPubMedGoogle Scholar
  11. 11.
    Stoffels E, Kieft IE, Sladek REJ et al (2006) Plasma needle for in vivo medical treatment: recent developments and perspectives. Plasma Sources Sci Technol 15(4):S169–S180.  https://doi.org/10.1088/0963-0252/15/4/S03 CrossRefGoogle Scholar
  12. 12.
    Bekeschus S, Iséni S, Reuter S et al (2015) Nitrogen shielding of an Argon plasma jet and its effects on human immune cells. IEEE Trans Plasma Sci 43:776–781CrossRefGoogle Scholar
  13. 13.
    Kalghatgi S, Kelly CM, Cerchar E et al (2011) Effects of non-thermal plasma on mammalian cells. PLoS ONE 6(1):e16270CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Bekeschus S, von Woedtke T, Kramer A et al (2013) Cold physical plasma treatment alters redox balance in human immune cells. Plasma Med 3:267–278CrossRefGoogle Scholar
  15. 15.
    Laroussi M (2002) Nonthermal decontamination of biological media by atmospheric-pressure plasmas: review, analysis, and prospects. Ieee Trans Plasma Sci 30:1409–1415CrossRefGoogle Scholar
  16. 16.
    Bekeschus S, Kolata J, Winterbournet C et al (2014) Hydrogen peroxide: a central player in physical plasma-induced oxidative stress in human blood cells. Free Radic Res 48:542–549CrossRefPubMedGoogle Scholar
  17. 17.
    Schmidt A, Dietrich S, Steuer A et al (2015) Non-thermal plasma activates human keratinocytes by stimulation of antioxidant and phase II pathways. J Biol Chem 290:6731–6750CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Weiss M, Daeschlein G, Kramer A et al (2017) Virucide properties of cold atmospheric plasma for future clinical applications. J Med Virol 89:952–959CrossRefPubMedGoogle Scholar
  19. 19.
    Gay-Mimbrera J, García MC, Isla-Tejera B et al (2016) Clinical and biological principles of cold atmospheric plasma application in skin cancer. Adv Ther 33:894–909CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Heinlin J, Isbary G, Stolz W et al (2011) Plasma applications in medicine with a special focus on dermatology. J Eur Acad Dermatol Venereol 25:1–11CrossRefPubMedGoogle Scholar
  21. 21.
    Bekeschus S, Rödder K, Schmidt A et al (2016) Cold physical plasma selects for specific T helper cell subsets with distinct cells surface markers in a caspase-dependent and NF-κB-independent manner. Plasma Process Polym 13:1144–1150CrossRefGoogle Scholar
  22. 22.
    Gümbel D, Bekeschus S, Gelbrich N et al (2017) Cold atmospheric plasma in the treatment of osteosarcoma. Int J Mol Sci 18:E2004CrossRefPubMedGoogle Scholar
  23. 23.
    Graves DB (2014) Reactive species from cold atmospheric plasma: implications for cancer therapy. Plasma Process Polym 11:1120–1127CrossRefGoogle Scholar
  24. 24.
    Koensgen D, Besic I, Gümbel D et al (2017) Cold atmospheric plasma (CAP) and CAP-Stimulated cell culture media suppress ovarian cancer cell growth – a putative treatment option in ovarian cancer therapy. Anticancer Res 37:6739–6744PubMedGoogle Scholar
  25. 25.
    Partecke LI, Evert K, Haugk J et al (2012) Tissue tolerable plasma (TTP) induces apoptosis in pancreatic cancer cells in vitro and in vivo. BMC Cancer 12:473CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Liedtke KR, Bekeschus S, Käding A, Partecke LI (2017) Non-thermal plasma-treated solution demonstrates antitumor activity against pancreatic cancer cells in vitro and in vivo. Sci Rep 7(1):8319.  https://doi.org/10.1038/s41598-017-08560-3 CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Bekeschus S, Schmidt A, Kramer A et al (2018) High throughput image cytometry micronucleus assay to investigate the presence or absence of mutagenic effects of cold physical plasma. Environ Mol Mutagen.  https://doi.org/10.1002/em.22172 PubMedCrossRefGoogle Scholar
  28. 28.
    Kluge S, Bekeschus S, Bender C et al (2016) Investigating the mutagenicity of a cold argon-plasma jet in an HET-MN model. PLoS ONE 11:e160667CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Wende K, Bekeschus S, Schmidt A et al (2016) Risk assessment of a cold argon plasma jet in respect to its mutagenicity. Mutat Res Genet Toxicol Environ Mutagen 798–799:48–54CrossRefPubMedGoogle Scholar
  30. 30.
    Welz C, Emmert S, Canis M et al (2015) Cold atmospheric plasma: a promising complementary therapy for squamous head and neck cancer. PLoS ONE 10:e141827CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Ahn HJ, Kim KI, Kim G et al (2011) Atmospheric-pressure plasma jet induces apoptosis involving mitochondria via generation of free radicals. PLoS ONE 6:e28154CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Arndt S, Wacker E, Li YF et al (2013) Cold atmospheric plasma, a new strategy to induce senescence in melanoma cells. Exp Dermatol 22:284–289CrossRefPubMedGoogle Scholar
  33. 33.
    Zucker SN, Zirnheld J, Bagati A et al (2012) Preferential induction of apoptotic cell death in melanoma cells as compared with normal keratinocytes using a non-thermal plasma torch. Cancer Biol Ther 13:1299–1306CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Arndt S, Landthaler M, Zimmermann JL et al (2015) Effects of cold atmospheric plasma (CAP) on ß‑defensins, inflammatory cytokines, and apoptosis-related molecules in keratinocytes in vitro and in vivo. PLoS ONE 10:e120041CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Claro T, Cahill OJ, O’Connor N et al (2015) Cold-air atmospheric pressure plasma against clostridium difficile spores: a potential alternative for the decontamination of hospital inanimate surfaces. Infect Control Hosp Epidemiol 36:742–744CrossRefPubMedGoogle Scholar
  36. 36.
    Hoffmann C, Berganza C, Zhang J (2013) Cold atmospheric plasma: methods of production and application in dentistry and oncology. Med Gas Res 3:21CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Daeschlein G, Hillmann A, Gümbel D et al (2018) Enhanced anticancer efficacy by drug chemotherapy and cold atmospheric plasma against melanoma and glioblastoma cell lines in vitro. IEEE Trans Radiat Plasna Med Sci.  https://doi.org/10.1109/TRPMS.2018.2789659 CrossRefGoogle Scholar
  38. 38.
    Gümbel D, Suchy B, Wien L et al (2017) Comparison of cold atmospheric plasma devices’ efficacy on osteosarcoma and fibroblastic in vitro cell models. Anticancer Res 37:5407–5414PubMedGoogle Scholar
  39. 39.
    Gümbel D, Gelbrich N, Weiss M et al (2016) New treatment options for osteosarcoma – inactivation of osteosarcoma cells by cold atmospheric plasma. Anticancer Res 36:5915–5922CrossRefPubMedGoogle Scholar
  40. 40.
    Georgescu N, Lupux AR (2010) Tumoral and normal cells treatment with high-voltage pulsed cold atmospheric plasma jets. IEEE Trans Plasma Sci 38(8):1949–1955.  https://doi.org/10.1109/TPS.2010.2041075 CrossRefGoogle Scholar
  41. 41.
    Zirnheld JL, Zucker SN, DiSanto TM et al (2010) Nonthermal plasma needle: development and targeting of melanoma cells. IEEE Trans Plasma Sci 38(4):948–952.  https://doi.org/10.1109/TPS.2010.2041470 CrossRefGoogle Scholar
  42. 42.
    Kim GJ, Kim W, Kim KT, Lee JK (2010) DNA damage and mitochondria dysfunction in cell apoptosis induced by nonthermal air plasma. Appl Phys Lett.  https://doi.org/10.1063/1.3292206 PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Yan D, Talbot A, Nourmohammadi N et al (2015) Toward understanding the selective anticancer capacity of cold atmospheric plasma – a model based on aquaporins (Review). Biointerphases 10:40801CrossRefPubMedGoogle Scholar
  44. 44.
    Ishaq M, Kumar S, Varinli H et al (2014) Atmospheric gas plasma-induced ROS production activates TNF-ASK1 pathway for the induction of melanoma cancer cell apoptosis. Mol Biol Cell 25(9):1523–1531.  https://doi.org/10.1091/mbc.e13-10-0590 CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Ishaq M, Evans MD, Ostrikov KK (2014) Atmospheric pressure gas plasma-induced colorectal cancer cell death is mediated by Nox2-ASK1 apoptosis pathways and oxidative stress is mitigated by Srx-Nrf2 anti-oxidant system. Biochim Biophys Acta 1843(12):2827–28375CrossRefPubMedGoogle Scholar
  46. 46.
    Kaushik N, Kumar N, Kim CH et al (2014) Dielectric barrier discharge plasma efficiently delivers an apoptotic response in human monocytic lymphoma. Plasma Process Polym 11(12):1175–1187CrossRefGoogle Scholar
  47. 47.
    Cairns RA, Harris IS, Mak TW (2011) Regulation of cancer cell metabolism. Nat Rev Cancer 11:85–95CrossRefPubMedGoogle Scholar
  48. 48.
    Cairns RA, Harris IS, McCracken S, Mak TW (2011) Cancer cell metabolism. Cold Spring Harb Symp Quant Biol 76:299–311CrossRefPubMedGoogle Scholar
  49. 49.
    Metelmann HR, Vu TT, Do HT et al (2013) Scar formation of laser skin lesions after cold atmospheric pressure plasma (CAP) treatment: a clinical long term observation. Clin Plasma Med 1:30–35CrossRefGoogle Scholar
  50. 50.
    Keidar M, Walk R, Shashurin A et al (2011) Cold plasma selectivity and the possibility of a paradigm shift in cancer therapy. Br J Cancer 105:1295–1301CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Mohades S, Barekzi N, Laroussi M (2014) Efficacy of low temperature plasma against SCaBER cancer cells. Plasma Process Polym 11:1150–1155CrossRefGoogle Scholar
  52. 52.
    Weiss M, Gümbel D, Gelbrich N et al (2015) Inhibition of cell growth of the prostate cancer cell model LNCaP by cold atmospheric plasma. In Vivo (Brooklyn) 29:611–616Google Scholar
  53. 53.
    Gümbel D, Gelbrich N, Napp M et al (2017) Peroxiredoxin expression of human osteosarcoma cells is influenced by cold atmospheric plasma treatment. Anticancer Res 37:1031–1038CrossRefPubMedGoogle Scholar
  54. 54.
    Hirst AM, Simms MS, Mann VM et al (2015) Low-temperature plasma treatment induces DNA damage leading to necrotic cell death in primary prostate epithelial cells. Br J Cancer 112:1536–1545CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Hirst AM, Frame FM, Maitland NJ et al (2014) Low temperature plasma causes double-strand break DNA damage in primary epithelial cells cultured from a human prostate tumour. IEEE Trans Plasma Sci 2:2740–2741CrossRefGoogle Scholar
  56. 56.
    Kogelschatz U (2003) Dielectric-barrier discharges: their history, discharge physics, and industrial applications. Plasma Chem Plasma Process 1(23):1–46CrossRefGoogle Scholar
  57. 57.
    Ananth A, Mok YS (2015) Dielectric barrier discharge plasma-mediated synthesis of several oxide nanomaterials and its characterization. Powder Technol 269:259–266CrossRefGoogle Scholar
  58. 58.
    Yamamori T, Yasui H, Yamazumi M et al (2012) Ionizing radiation induces mitochondrial reactive oxygen species production accompanied by upregulation of mitochondrial electron transport chain function and mitochondrial content under control of the cell cycle checkpoint. Free Radic Biol Med 15:260–270CrossRefGoogle Scholar
  59. 59.
    Finkel T (2011) Signal transduction by reactive oxygen species. J Cell Biol 194:7–15CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Bae YS, Oh H, Rhee SG, Yoo YD (2011) Regulation of reactive oxygen species generation in cell signaling. Mol Cells 32:491–509CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Davis RJ (2000) Signal transduction by the JNK group of MAP kinases. Cell 103:239–252CrossRefPubMedGoogle Scholar
  62. 62.
    Torres M (2003) Mitogen-activated protein kinase pathways in redox signaling. Front Biosci 8:d369–391CrossRefPubMedGoogle Scholar
  63. 63.
    Aoki H, Kang PM, Hampe J et al (2002) Direct activation of mitochondrial apoptosis machinery by c‑Jun N‑terminal kinase in adult cardiac myocytes. J Biol Chem 277:10244–10250CrossRefPubMedGoogle Scholar
  64. 64.
    Bundscherer L, Wende K, Ottmüller K et al (2013) Impact of non-thermal plasma treatment on MAPK signaling pathways of human immune cell lines. Immunobiology 218(10):1248–1255CrossRefPubMedGoogle Scholar
  65. 65.
    Andreyev AY, Kushnareva YE, Starkov AA (2004) Mitochondrial metabolism of reactive oxygen species. Biochemistry 70(2):200–214Google Scholar

Copyright information

© Springer Medizin Verlag GmbH, ein Teil von Springer Nature 2018

Authors and Affiliations

  1. 1.Klinik und Poliklinik für UrologieUniversitätsmedizin GreifswaldGreifswaldDeutschland

Personalised recommendations