Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Einfluss des Diabetes mellitus auf die Fertilität des Mannes

Ein wenig untersuchter Faktor der männlichen Infertilität

The influence of diabetes mellitus on male reproductive function

A poorly investigated aspect of male infertility

Zusammenfassung

Der Diabetes mellitus (DM) bringt zahlreiche systemische Komplikationen mit sich. Im andrologischen Arbeitsgebiet stehen die Erektionsstörung, die retrograde Ejakulation und der Hypogonadismus im Vordergrund. Die Störung der männlichen Infertilität im Zusammenhang mit dem DM ist als solche nicht bekannt. Aufgrund der unzureichenden und teilweise nicht stimmigen Datenlage hinsichtlich der Auswirkungen dieser Erkrankung auf die Spermienqualität erachten nur wenige Fertilitätsspezialisten sie als relevant. Folglich gibt es nur wenige Informationen über ihre Prävalenz bei infertilen Männern. Aufgrund von neuen Studienergebnissen, die zeigten, dass Diabetes minimale molekulare Veränderungen induziert, die für die Spermienfunktion und -qualität wichtig sind, muss diese Einschätzung überdacht werden. Diabetische Männer weisen einen signifikant höheren Anteil von Spermien mit Kern-DNA-Schädigung (nDNA) auf, ein Faktor, der mit einer Einschränkung der Fertilität und erhöhten Fehlgeburtsraten einhergeht. Der Mechanismus, durch den diese diabetogene Spermien-nDNA-Schädigung ausgelöst wird, ist unbekannt. Die Feststellung hoher Spiegel nichtenzymatisch glykosylierter Proteine bzw. Lipide als irreversible Endprodukte („advanced glycation end products“, AGE) und ihres Rezeptors (RAGE) im ganzen männlichen Reproduktionstrakt im Zusammenhang mit Veränderungen der testikulären Metabolitenspiegel und Spermatogenese-Genexpression lassen vermuten, dass die Glykosylierung eine integrale Rolle beim oxidativen Stress spielt, der wiederum eine Spermien-nDNA-Schädigung verursacht. Da die Glykosylierung eine normale Auswirkung des Lebens ist und in die DNA-Fragmentierung verschiedener scheinbar nicht verbundener Bedingungen involviert ist, könnte sie ein allgemeiner Mechanismus für die an Spermien-DNA zu beobachtende Schädigung sein.

Abstract

Whilst diabetes mellitus is known to have many systemic complications, male infertility, beyond impotence, retrograde ejaculation and hypogonadism, has not been widely recognised to be one of them. Due to the paucity of studies and inconsistencies regarding the condition’s impact on semen quality, few fertility specialists consider the condition noteworthy. As a consequence little information exists as to its prevalence amongst infertile men. Recently the prevailing view has been challenged by findings showing that diabetes induces subtle molecular changes that are important for sperm quality and function. Diabetic men have been found to have a significantly higher percentage of sperm with nuclear DNA damage, a factor known to be associated with compromised fertility and increased miscarriage rates. The mechanism by which this diabetes-related sperm nDNA damage occurs remains unknown. The identification of high levels of advanced glycation end products (AGEs) and their receptor (RAGE) throughout the male reproductive tract coupled to changes in testicular metabolite levels and spermatogenic gene expression suggest that glycation may play an integral role in oxidative stress which in turn causes sperm nDNA damage. As glycation is a normal consequence of life and has been implicated in DNA fragmentation in a variety of seemingly unconnected conditions, it may constitute a common mechanism for the damage seen in sperm DNA.

This is a preview of subscription content, log in to check access.

Literatur

  1. 1.

    Hamilton BE, Ventura SJ (2006) Fertility and abortion rates in the United States, 1960–2002. Int J Androl 29:34–45

  2. 2.

    Lutz W (2006) Fertility rates and future population trends: will Europe’s birth rate recover or continue to decline? Int J Androl 29:25–33

  3. 3.

    Carlsen E, Giwercman A, Keiding N et al (1992) Evidence for decreasing quality of semen during past 50 years. BMJ 305:609–613

  4. 4.

    Morgan SP (2003) Is low fertility a twenty-first century demographic crisis? Demography 40:589–603

  5. 5.

    Skakkebaek NE, Jorgensen N, Main KM et al (2006) Is human fecundity declining? Int J Androl 29:2–11

  6. 6.

    Templeton A (2000) Infertility and the establishment of pregnancy-overview. Br Med Bull 56:577–587

  7. 7.

    Gnoth C, Godehardt E, Frank-Herrmann P et al (2005) Definition and prevalence of subfertility and infertility. Hum Reprod 20:1144–1147

  8. 8.

    Kretser DM de (1996) Declining sperm counts. BMJ 312:457–458

  9. 9.

    Jensen TK, Carlsen E, Jorgensen N et al (2002) Poor semen quality may contribute to recent decline in fertility rates. Hum Reprod 17:1437–1440

  10. 10.

    Sexton WJ, Jarow JP (1997) Effect of diabetes mellitus upon male reproductive function. Urology 49:508–513

  11. 11.

    Bettocchi C, Verze P, Palumbo F et al (2008) Ejaculatory disorders: pathophysiology and management. Nat Clin Pract Urol 5:93–103

  12. 12.

    Daubresse JC, Meunier JC, Wilmotte J et al (1978) Pituitary-testicular axis in diabetic men with and without sexual impotence. Diabetes Metab 4:233–237

  13. 13.

    Dinulovic D, Radonjic G (1990) Diabetes mellitus/male infertility. Arch Androl 25:277–293

  14. 14.

    Garcia-Diez LC, Corrales Hernandez JJ, Hernandez-Diaz J et al (1991) Semen characteristics and diabetes mellitus: significance of insulin in male infertility. Arch Androl 26:119–128

  15. 15.

    Baccetti B, La Marca A, Piomboni P et al (2002) Insulin-dependent diabetes in men is associated with hypothalamo-pituitary derangement and with impairment in semen quality. Hum Reprod 17:2673–2677

  16. 16.

    Ballester J, Munoz MC, Dominguez J et al (2004) Insulin-dependent diabetes affects testicular function by FSH- and LH-linked mechanisms. J Androl 25:706–719

  17. 17.

    Handelsman DJ, Conway AJ, Boylan LM et al (1985) Testicular function and glycemic control in diabetic men. A controlled study. Andrologia 17:488–496

  18. 18.

    Vignon F, Le Faou A, Montagnon D et al (1991) Comparative study of semen in diabetic and healthy men. Diabetes Metab 17:350–354

  19. 19.

    Ali ST, Shaikh RN, Ashfaqsiddiqi N et al (1993) Serum and urinary levels of pituitarygonadal hormones in insulin-dependent and non-insulin-dependent diabetic males with and without neuropathy. Arch Androl 30:117–123

  20. 20.

    Niven MJ, Hitman GA, Badenoch DF (1995) A study of spermatozoal motility in type 1 diabetes mellitus. Diabet Med 12:921–924

  21. 21.

    Agbaje IM, Rogers DA, McVicar CM et al (2007) Insulin dependant diabetes mellitus: implications for male reproductive function. Hum Reprod 22:1871–1877

  22. 22.

    Delfino M, Imbrogno N, Elia J et al (2007) Prevalence of diabetes mellitus in male partners of infertile couples. Minerva Urol Nefrol 59:131–135

  23. 23.

    Greenberg SH, Lipshultz LI, Wein AJ (1978) Experience with 425 subfertile male patients. J Urol 119:507–510

  24. 24.

    Murray FT, Cameron DF, Orth JM (1983) Gonadal dysfunction in the spontaneously diabetic BB rat. Metabolism 32:141–147

  25. 25.

    Frenkel GP, Homonnai ZT, Drasnin N et al (1978) Fertility of the streptozotocin-diabetic male rat. Andrologia 10:127–136

  26. 26.

    Scarano WR, Messias AG, Oliva SU et al (2006) Sexual behaviour, sperm quantity and quality after short-term streptozotocin-induced hyperglycaemia in rats. Int J Androl 29:482–488

  27. 27.

    Shrilatha B, Muralidhara (2007) Occurrence of oxidative impairments, response of antioxidant defences and associated biochemical perturbations in male reproductive milieu in the Streptozotocin-diabetic rat. Int J Androl 30:508–518

  28. 28.

    Cameron DF, Rountree J, Schultz RE et al (1990) Sustained hyperglycemia results in testicular dysfunction and reduced fertility potential in BBWOR diabetic rats. Am J Physiol 259:881–889

  29. 29.

    Mallidis C, Agbaje I, Rogers D et al (2007) Distribution of the receptor for advanced glycation end products in the human male reproductive tract: prevalence in men with diabetes mellitus. Hum Reprod 22:2169–2177

  30. 30.

    Mallidis C, Agbaje IM, Rogers DA et al (2009) Advanced glycation end products accumulate in the reproductive tract of men with diabetes. Int J Androl 32:295–305

  31. 31.

    World Health Organisation (1999) Laboratory manual for the examination of human semen and sperm-cervical interaction. Cambridge University Press, United Kingdom

  32. 32.

    Agbaje IM, McVicar CM, Schock BC et al (2008) Increased concentrations of the oxidative DNA adduct 7,8-dihydro-8-oxo-2-deoxyguanosine in the germ-line of men with type 1 diabetes. Reprod Biomed 16:401–409

  33. 33.

    Shrilatha B, Muralidhara (2007) Early oxidative stress in testis and epididymal sperm in streptozotocin-induced diabetic mice: its progression and genotoxic consequences. Reprod Toxicol 23:578–587

  34. 34.

    Saleh RA, Agarwal A, Nelson DR et al (2002) Increased sperm nuclear DNA damage in normozoospermic infertile men: a prospective study. Fertil Steril 78:313–318

  35. 35.

    Trisini AT, Singh NP, Duty SM et al (2004) Relationship between human semen parameters and deoxyribonucleic acid damage assessed by the neutral comet assay. Fertil Steril 82:1623–1632

  36. 36.

    Bertolla RP, Cedenho AP, Hassun Filho PA et al (2006) M. Sperm nuclear DNA fragmentation in adolescents with varicocele. Fertil Steril 85:625–628

  37. 37.

    Moskovtsev SI, Willis J, Mullen JB (2006) Age-related decline in sperm deoxyribonucleic acid integrity in patients evaluated for male infertility. Fertil Steril 85:496–499

  38. 38.

    Sepaniak S, Forges T, Gerard H et al (2006) The influence of cigarette smoking on human sperm quality and DNA fragmentation. Toxicology 223:54–60

  39. 39.

    Makhlouf AA, Niederberger C (2006) DNA integrity tests in clinical practice: it is not a simple matter of black and white (or red and green). J Androl 27:316–323

  40. 40.

    Lewis SE, Aitken RJ (2005) DNA damage to spermatozoa has impacts on fertilization and pregnancy. Cell Tissue Res 322:33–41

  41. 41.

    Babbott D, Rubin A, Ginsburg SJ (1958) The reproductive characteristics of diabetic men. Diabetes 7:33–35

  42. 42.

    Duran EH, Morshedi M, Taylor S et al (2002) Sperm DNA quality predicts intrauterine insemination outcome: a prospective cohort study. Hum Reprod 17:3122–3128

  43. 43.

    Tomlinson MJ, Moffatt O, Manicardi GC et al (2001) Interrelationships between seminal parameters and sperm nuclear DNA damage before and after density gradient centrifugation: implications for assisted conception. Hum Reprod 16:2160–2165

  44. 44.

    Benchaib M, Braun V, Lornage J et al (2003) Sperm DNA fragmentation decreases the pregnancy rate in an assisted reproductive technique. Hum Reprod 18:1023–1028

  45. 45.

    Fouchecourt S, Metayer S, Locatelli A et al (2000) Stallion epididymal fluid proteome: qualitative and quantitative characterization; secretion and dynamic changes of major proteins. Biol Reprod 62:1790–1803

  46. 46.

    Vernet P, Fulton N, Wallace C et al (2001) Analysis of reactive oxygen species generating systems in rat epididymal spermatozoa. Biol Reprod 65:1102–1113

  47. 47.

    Donnelly ET, Steele EK, McClure N et al (2001) Assessment of DNA integrity and morphology of ejaculated spermatozoa from fertile and infertile men before and after cryopreservation. Hum Reprod 16:1191–1199

  48. 48.

    Gil-Guzman E, Ollero M, Lopez MC et al (2001) Differential production of reactive oxygen species by subsets of human spermatozoa at different stages of maturation. Hum Reprod 16:1922–1930

  49. 49.

    Aitken RJ, Baker MA (2006) Oxidative stress, sperm survival and fertility control. Mol Cell Endocrinol 250:66–69

  50. 50.

    Alvarez JG, Sharma RK, Ollero M et al (2002) Increased DNA damage in sperm from leukocytospermic semen samples as determined by the sperm chromatin structure assay. Fertil Steril 78:319–329

  51. 51.

    Vlassara H, Palace MR (2002) Diabetes and advanced glycation endproducts. J Intern Med 251:87–101

  52. 52.

    Singh NP, Muller CH, Berger RE (2003) Effects of age on DNA double-strand breaks and apoptosis in human sperm. Fertil Steril 80:1420–1430

  53. 53.

    Thornalley PJ (1990) The glyoxalase system: new developments towards functional characterization of a metabolic pathway fundamental to biological life. Biochem J 269:1–11

  54. 54.

    Thornalley PJ (2003) Protecting the genome: defence against nucleotide glycation and emerging role of glyoxalase I overexpression in multidrug resistance in cancer chemotherapy. Biochem Soc Trans 31:1372–1377

  55. 55.

    Thorpe SR, Baynes JW (2003) Maillard reaction products in tissue proteins: new products and new perspectives. Amino Acids 25:275–281

  56. 56.

    Peppa M, Uribarri J, Vlassara H (2003) Glucose, advanced glycation end products, and diabetes complications: what is new and what works. Clin Diabetes 21:186–187

  57. 57.

    Koschinsky T, He CJ, Mitsuhashi T et al (1997) Orally absorbed reactive glycation products (glycotoxins): an environmental risk factor in diabetic nephropathy. Proc Natl Acad Sci USA 94:6474–6479

  58. 58.

    Wautier JL, Schmidt AM (2004) Protein glycation: a firm link to endothelial cell dysfunction. Circ Res 95:233–238

  59. 59.

    Ramasamy R, Vannucci SJ, Yan SS et al (2005) AM. Advanced glycation end products and RAGE: a common thread in aging, diabetes, neurodegeneration, and inflammation. Glycobiology 15:16–28

  60. 60.

    Wendt T, Tanji N, Guo J et al (2003) Glucose, glycation, and RAGE: implications for amplification of cellular dysfunction in diabetic nephropathy. J Am Soc Nephrol 14:1383–1395

  61. 61.

    Suganuma R, Yanagimachi R, Meistrich ML (2005) Decline in fertility of mouse sperm with abnormal chromatin during epididymal passage as revealed by ICSI. Hum Reprod 20:3101–3108

  62. 62.

    Mallidis C, Green BD, Rogers D et al (2009) Metabolic profile changes in the testes of mice with streptozotocin-induced type 1 diabetes mellitus. Int J Androl 32:156–165

  63. 63.

    Mallidis C, Agbaje I, O’Neill J et al (2009) The influence of type 1 diabetes mellitus on spermatogenic gene expression. Fertil Steril 92:2085–2087

  64. 64.

    Coffino P (2000) Polyamines in spermiogenesis: not now, darling. Proc Natl Acad Sci USA 97:4421–4423

  65. 65.

    Quemener V, Blanchard Y, Lescoat D et al (1992) Depletion in nuclear spermine during human spermatogenesis, a natural process of cell differentiation. Am J Physiol 263:343–347

  66. 66.

    Ogata K, Nishimoto N, Uhlinger DJ et al (1996) Spermine suppresses the activation of human neutrophil NADPH oxidase in cell-free and semi-recombinant systems. Biochem J 313:549–554

  67. 67.

    Sava IG, Battaglia V, Rossi CA et al (2006) Free radical scavenging action of the natural polyamine spermine in rat liver mitochondria. Free Radic Biol Med 41:1272–1281

  68. 68.

    Gugliucci A, Menini T (2003) The polyamines spermine and spermidine protect proteins from structural and functional damage by AGE precursors: a new role for old molecules? Life Sci 72:2603–2616

  69. 69.

    Chavakis T, Bierhaus A, Nawroth PP (2004) RAGE (receptor for advanced glycation end products): a central player in the inflammatory response. Microbes Infect 6:1219–1225

  70. 70.

    Chavarro JE, Toth TL, Wright DL et al (2010) Body mass index in relation to semen quality, sperm DNA integrity, and serum reproductive hormone levels among men attending an infertility clinic. Fertil Steril 93:2222–2231

  71. 71.

    Shrivastav P, Swann J, Jeremy JY et al (1989) Sperm function and structure and seminal plasma prostanoid concentrations in men with IDDM. Diabetes Care 12(10):742–744

  72. 72.

    Padron RS, Dambay A, Suarez R, Mas J (1984) Semen analyses in adolescent diabetic patients. Acta Diabetol Lat 21(2):115–121

  73. 73.

    Bartak V, Josifko M, Horackova M (1975) Juvenile diabetes and human sperm quality. Int J Fertil 20(1):30–32

Download references

Interessenkonflikt

Keine Angaben

Author information

Correspondence to Dr. rer. nat. C. Mallidis.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Mallidis, C., Agbaje, I., McClure, N. et al. Einfluss des Diabetes mellitus auf die Fertilität des Mannes. Urologe 50, 33–37 (2011). https://doi.org/10.1007/s00120-010-2440-3

Download citation

Schlüsselwörter

  • Diabetes mellitus
  • Männliche Fertilität
  • Assistierte Reproduktion
  • Hypogonadismus
  • Glykosylierung

Keywords

  • Diabetes mellitus
  • Male fertility
  • Assisted reproduction
  • Hypogonadism
  • Glycation