Advertisement

Der Radiologe

, Volume 59, Issue 8, pp 710–721 | Cite as

MR- und CT-Arthrographie zur Knorpeldiagnostik

Indikationen und Durchführung
  • B. KlaanEmail author
  • F. Wuennemann
  • L. Kintzelé
  • A. S. Gersing
  • M.-A. Weber
Leitthema
  • 185 Downloads

Zusammenfassung

Hintergrund

Die Diagnostik von Knorpelveränderungen ist ein zentraler Bestandteil in der Abklärung akuter und chronischer Gelenkbeschwerden. Die CT- und MR-Arthrographie gehören neben der nativen MRT zu den etablierten Techniken für die dezidierte Beurteilung des Gelenkknorpels. Für die Anwendung in der klinischen Diagnostik sollten Radiologen deren Anwendungsmöglichkeiten kennen und sichere Techniken zur Kontrastmittelinjektion beherrschen.

Ziel

Dieser Übersichtsartikel erläutert die Techniken der Schnittbild-Arthrographie an verschiedenen Gelenken, gibt einen Überblick über die allgemeine und gelenkspezifische Durchführung sowie über übliche Indikationen in der Knorpeldiagnostik.

Material und Methoden

Es erfolgte eine selektive PubMed-Literaturrecherche zu den Stichworten „arthrography“, „CT arthrography“, „MR arthrography“, „arthrography cartilage“, „arthrography wrist“, „arthrography elbow“, „arthrography shoulder“, „arthrography hip“, „arthrography knee“, „arthrography ankle“, „arthrography complications“, „arthrography imaging guidance“ „osteochondral lesion“, „cartilage imaging“, „cartilage lesion“.

Ergebnisse und Schlussfolgerung

Die CT- und MR-Arthrographie sind nützliche und sichere Verfahren in der Knorpeldiagnostik. Sie haben ihren Stellenwert in der Verifizierung und Spezifizierung chondraler Pathologien, in der Regel nach bereits erfolgter nativer MRT, und spielen insbesondere bei der Stabilitätsbeurteilung und Therapieentscheidung osteochondraler Läsionen eine wichtige Rolle. Die CT-Arthrographie ist nicht nur Ersatzverfahren bei MRT-Kontraindikationen, sondern aufgrund ihrer höheren Auflösung für die Knorpelbeurteilung an kleinen Gelenken (Handgelenk, Ellenbogen, Sprunggelenk) der MR-Arthrographie tendenziell überlegen und kann in diesen Fällen auch als primäre Technik eingesetzt werden. Für die bildgesteuerte Gelenkpunktion ist die Fluoroskopie aktuell noch am Weitesten verbreitet, die ultraschallgesteuerte Punktion gewinnt aber zunehmend an Bedeutung. Die Gelenkuntersuchung unter Traktion bietet einen vielversprechenden Ansatz zur Verbesserung der Knorpeldarstellung, gehört jedoch noch nicht zur klinischen Routine.

Schlüsselwörter

Gelenkknorpel Osteochondrale Läsionen Muskuloskeletale Bildgebung Magnetresonanztomographie Computertomographie 

MR and CT arthrography in cartilage imaging

Indications and implementation

Abstract

Background

The imaging of chondral pathologies is an essential part in the work-up of acute and chronic joint diseases. Besides conventional MR imaging, CT and MR arthrography are well-established methods in evaluating articular cartilage. The application of these techniques requires knowledge of indications and safe injection procedures by the performing radiologist.

Purpose

Our goal is to describe the techniques of cross-sectional arthrographies of different joints, give an overview of general and joint-specific considerations for practical application as well as provide typical indications for cartilage imaging.

Materials and methods

A selective PubMed literature search concerning “arthrography”, “CT arthrography”, “MR arthrography”, “arthrography cartilage”, “arthrography wrist”, “arthrography elbow”, “arthrography shoulder”, “arthrography hip”, “arthrography knee”, “arthrography ankle”, “arthrography complications”, “arthrography imaging guidance” “osteochondral lesion”, “cartilage imaging” and “cartilage lesion” was performed.

Results and conclusion

CT and MR arthrography are valuable and safe tools in cartilage imaging. They are useful to verify and specify chondral pathologies, usually after conventional MR imaging, and have an important role in evaluating the stability and therefore in therapeutic decision making of osteochondral lesions. CT arthrography is not only a substitute technique in case of MR contraindications, it can be advantageous in small joints (wrist, elbow, ankle) compared to MR arthrography due to its higher image resolution. Fluoroscopic guided joint puncture is still the most commonly used image guidance method, but the role of ultrasound is steadily increasing. Joint traction in MR arthrography is a promising technique to improve cartilage visualization, though it is not yet used in clinical routine imaging.

Keywords

Cartilage, articular Osteochondral lesions Musculoskeletal imaging Magnetic resonance imaging Computed tomography 

Notes

Einhaltung ethischer Richtlinien

Interessenkonflikt

B. Klaan, F. Wuennemann, L. Kintzelé, A.S. Gersing und M.-A. Weber geben an, dass kein Interessenkonflikt besteht.

Für diesen Beitrag wurden von den Autoren keine Studien an Menschen oder Tieren durchgeführt. Für die aufgeführten Studien gelten die jeweils dort angegebenen ethischen Richtlinien.

Literatur

  1. 1.
    Omoumi P, Mercier GA, Lecouvet F, Simoni P, Vande Berg BC (2009) CT arthrography, MR arthrography, PET, and scintigraphy in osteoarthritis. Radiol Clin North Am 47(4):595–615CrossRefGoogle Scholar
  2. 2.
    Egloff C, Hügle T, Valderrabano V (2012) Biomechanics and pathomechanisms of osteoarthritis. Swiss Med Wkly 142:w13583Google Scholar
  3. 3.
    Felson DT, Lawrence RC, Dieppe PA, Hirsch R, Helmick CG, Jordan JM, Kington RS, Lane NE, Nevitt MC, Zhang Y, Sowers M, McAlindon T, Spector TD, Poole AR, Yanovski SZ, Ateshian G, Sharma L, Buckwalter JA, Brandt KD, Fries JF (2000) Osteoarthritis: New insights. Part 1: The disease and its risk factors. Ann Intern Med 133(8):635–646CrossRefGoogle Scholar
  4. 4.
    Kramer J, Recht MP, Imhof H, Stiglbaüer R, Engel A (1994) Postcontrast MR arthrography in assessment of cartilage lesions. J Comput Assist Tomogr 18(2):218–224CrossRefGoogle Scholar
  5. 5.
    Sconfienza LM, Albano D, Messina C, Silvestri E, Tagliafico AS (2018) How, when, why in magnetic resonance arthrography: An international survey by the European Society of Musculoskeletal Radiology (ESSR). Eur Radiol 28(6):2356–2368CrossRefGoogle Scholar
  6. 6.
    Guntern DV, Pfirrmann CW, Schmid MR, Zanetti M, Binkert CA, Schneeberger AG, Hodler J (2003) Articular cartilage lesions of the glenohumeral joint: Diagnostic effectiveness of MR arthrography and prevalence in patients with subacromial impingement syndrome. Radiology 226(1):165–170CrossRefGoogle Scholar
  7. 7.
    AG Muskuloskelettale Radiologie der DRG Indikationen zur direkten CT- und MR-Arthrographie. www.ag-msk.drg.de/media/document/2083/Empfehlungen-Arthro-F.pdf. Zugegriffen: 20.03.2019Google Scholar
  8. 8.
    Bergin D, Schweitzer ME (2003) Indirect magnetic resonance arthrography. Skeletal Radiol 32(10):551–558CrossRefGoogle Scholar
  9. 9.
    Schulte-Altedorneburg G, Gebhard M, Wohlgemuth WA, Fischer W, Zentner J, Wegener R, Balzer T, Bohndorf K (2003) MR arthrography: Pharmacology, efficacy and safety in clinical trials. Skeletal Radiol 32(1):1–12CrossRefGoogle Scholar
  10. 10.
    Cerezal L, Llopis E, Canga A, Rolón A (2008) MR arthrography of the ankle: Indications and technique. Radiol Clin North Am 46(6):973–994CrossRefGoogle Scholar
  11. 11.
    Pozzi G, Stradiotti P, Parra CG, Zagra L, Sironi S, Zerbi A (2009) Femoro-acetabular impingement: Can indirect MR arthrography be considered a valid method to detect endoarticular damage? A preliminary study. Hip Int 19(4):386–391CrossRefGoogle Scholar
  12. 12.
    Buckwalter KA (2006) CT arthrography. Clin Sports Med 25(4):899–915CrossRefGoogle Scholar
  13. 13.
    Gersing AS, Schwaiger BJ, Wörtler K, Jungmann PM (2018) Dezidierte Knorpelbildgebung zur Detektion von Knorpelverletzungen und osteochondralen Läsionen. Radiologe 58(5):422–432CrossRefGoogle Scholar
  14. 14.
    Llopis E, Fernandez E, Cerezal L (2012) MR and CT arthrography of the hip. Semin Musculoskelet Radiol 16(1):42–56CrossRefGoogle Scholar
  15. 15.
    Weber MA, Wünnemann F, Jungmann PM, Kuni B, Rehnitz C (2017) Moderne Knorpelbildgebung des Sprunggelenkes. Rofo 189(10):945–956.  https://doi.org/10.1055/s-0043-110861 CrossRefGoogle Scholar
  16. 16.
    Simoni P, Leyder PP, Albert A, Malchair F, Maréchal C, Scarciolla L, Beomonte Zobel B, Alvarez Miezentseva V, Gillet P (2014) Optimization of computed tomography (CT) arthrography of hip for the visualization of cartilage: An in vitro study. Skeletal Radiol 43(2):169–178CrossRefGoogle Scholar
  17. 17.
    Grainger AJ, Elliott JM, Campbell RS, Tirman PF, Steinbach LS, Genant HK (2000) Direct MR arthrography: A review of current use. Clin Radiol 55(3):163–176CrossRefGoogle Scholar
  18. 18.
    Messina C, Banfi G, Aliprandi A, Mauri G, Secchi F, Sardanelli F, Sconfienza LM (2016) Ultrasound guidance to perform intra-articular injection of gadolinium-based contrast material for magnetic resonance arthrography as an alternative to fluoroscopy: The time is now. Eur Radiol 26(5):1221–1225CrossRefGoogle Scholar
  19. 19.
    Binkert CA, Verdun FR, Zanetti M, Pfirrmann CW, Hodler J (2003) CT arthrography of the glenohumeral joint: CT fluoroscopy versus conventional CT and fluoroscopy—Comparison of image-guidance techniques. Radiology 229(1):153–158CrossRefGoogle Scholar
  20. 20.
    United Nations Scientific Committee on the Effects of Atomic Radiation (2008) Sources and effects of ionizing radiation. Report, volume 1Google Scholar
  21. 21.
    Lungu E, Moser TP (2015) A practical guide for performing arthrography under fluoroscopic or ultrasound guidance. Insights Imaging 6(6):601–610CrossRefGoogle Scholar
  22. 22.
    Hodler J (2008) Technical errors in MR arthrography. Skeletal Radiol 37(1):9–18CrossRefGoogle Scholar
  23. 23.
    Steinbach LS, Palmer WE, Schweitzer ME (2002) Special focus session. MR arthrography. Radiographics 22(5):1223–1246CrossRefGoogle Scholar
  24. 24.
    Kralik SF, Singhal KK, Frank MS, Ladd LM (2018) Evaluation of gadolinium deposition in the brain after MR arthrography. AJR Am J Roentgenol 211(5):1063–1067CrossRefGoogle Scholar
  25. 25.
    Foremny GB, Pretell-Mazzini J, Jose J, Subhawong TK (2015) Risk of bleeding associated with interventional musculoskeletal radiology procedures. A comprehensive review of the literature. Skeletal Radiol 44(5):619–627CrossRefGoogle Scholar
  26. 26.
    Hugo PC 3rd, Newberg AH, Newman JS, Wetzner SM (1998) Complications of arthrography. Semin Musculoskelet Radiol 2(4):345–348CrossRefGoogle Scholar
  27. 27.
    Newberg AH, Munn CS, Robbins AH (1985) Complications of arthrography. Radiology 155(3):605–606CrossRefGoogle Scholar
  28. 28.
    Chung CB, Dwek JR, Feng S, Resnick D (2001) MR arthrography of the glenohumeral joint: A tailored approach. AJR Am J Roentgenol 177(1):217–219CrossRefGoogle Scholar
  29. 29.
    Omoumi P, Rubini A, Dubuc JE, Vande Berg BC, Lecouvet FE (2015) Diagnostic performance of CT-arthrography and 1.5T MR-arthrography for the assessment of glenohumeral joint cartilage: A comparative study with arthroscopic correlation. Eur Radiol 25(4):961–969.  https://doi.org/10.1007/s00330-014-3469-2 CrossRefGoogle Scholar
  30. 30.
    Jarraya M, Roemer FW, Gale HI, Landreau P, D’Hooghe P, Guermazi A (2016) MR-arthrography and CT-arthrography in sports-related glenolabral injuries: A matched descriptive illustration. Insights Imaging 7(2):167–177.  https://doi.org/10.1007/s13244-015-0462-5 CrossRefGoogle Scholar
  31. 31.
    Lecouvet FE, Dorzée B, Dubuc JE, Vande Berg BC, Jamart J, Malghem J (2007) Cartilage lesions of the glenohumeral joint: Diagnostic effectiveness of multidetector spiral CT arthrography and comparison with arthroscopy. Eur Radiol 17(7):1763–1771CrossRefGoogle Scholar
  32. 32.
    Shahabpour M, Kichouh M, Laridon E, Gielen JL, De Mey J (2008) The effectiveness of diagnostic imaging methods for the assessment of soft tissue and articular disorders of the shoulder and elbow. Eur J Radiol 65(2):194–200.  https://doi.org/10.1016/j.ejrad.2007.11.012 CrossRefGoogle Scholar
  33. 33.
    Ruchelsman DE, Hall MP, Youm T (2010) Osteochondritis dissecans of the capitellum: Current concepts. J Am Acad Orthop Surg 18(9):557–567CrossRefGoogle Scholar
  34. 34.
    Holland P, Davies AM, Cassar-Pullicino VN (1994) Computed tomographic arthrography in the assessment of osteochondritis dissecans of the elbow. Clin Radiol 49(4):231–235CrossRefGoogle Scholar
  35. 35.
    Waldt S, Bruegel M, Ganter K, Kuhn V, Link TM, Rummeny EJ, Woertler K (2005) Comparison of multislice CT arthrography and MR arthrography for the detection of articular cartilage lesions of the elbow. Eur Radiol 15(4):784–791CrossRefGoogle Scholar
  36. 36.
    Lee RK, Griffith JF, Yuen BT, Ng AW, Yeung DK (2016) Elbow MR arthrography with traction. Br J Radiol.  https://doi.org/10.1259/bjr.20160378 Google Scholar
  37. 37.
    Donati OF, Nordmeyer-Massner J, Nanz D, White LM, Tami I, Vich M, Pruessmann KP, Andreisek G (2011) Direct MR arthrography of cadaveric wrists: Comparison between MR imaging at 3.0T and 7.0T and gross pathologic inspection. J Magn Reson Imaging 34(6):1333–1340CrossRefGoogle Scholar
  38. 38.
    Dallaudière B, Moreau-Durieux MH, Larbi A, Perozziello A, Huot P, Meyer P, Pesquer L (2016) Effects of axial traction during direct MR-arthrography of the wrist in sports injuries. J Belg Soc Radiol 100(1):72CrossRefGoogle Scholar
  39. 39.
    Lee RK, Griffith JF, Tang WK, Ng AW, Yeung DK (2017) Effect of traction on wrist joint space and cartilage visibility with and without MR arthrography. Br J Radiol.  https://doi.org/10.1259/bjr.20160932 Google Scholar
  40. 40.
    Duc SR, Hodler J, Schmid MR, Zanetti M, Mengiardi B, Dora C, Pfirrmann CW (2006) Prospective evaluation of two different injection techniques for MR arthrography of the hip. Eur Radiol 16(2):473–478CrossRefGoogle Scholar
  41. 41.
    Czerny C, Hofmann S, Urban M, Tschauner C, Neuhold A, Pretterklieber M, Recht MP, Kramer J (1999) MR arthrography of the adult acetabular capsular-labral complex: Correlation with surgery and anatomy. AJR Am J Roentgenol 173(2):345–349CrossRefGoogle Scholar
  42. 42.
    Schueller G, Schueller-Weidekamm C (2012) Koxarthrose – Eine radiologische Annäherung und Leitfaden. Radiologe 52(2):156–162.  https://doi.org/10.1007/s00117-011-2237-4 CrossRefGoogle Scholar
  43. 43.
    Neuhold A, Czerny C, Wicke I, Liederer M (2002) Detektion freier Gelenkskörper mit der MR-Arthrographie (Abstract ESSR 2002 Valencia)Google Scholar
  44. 44.
    Pfirrmann CW, Duc SR, Zanetti M et al (2008) MR arthrography of acetabular cartilage delamination in femoroacetabular cam impingement. Radiology 249:236–241CrossRefGoogle Scholar
  45. 45.
    Sutter R, Zubler V, Hoffmann A et al (2014) Hip MRI: How useful is intraarticular contrast material for evaluating surgically proven lesions of the labrum and articular cartilage? AJR Am J Roentgenol 202(01):160–169CrossRefGoogle Scholar
  46. 46.
    Davies O, Grammatopoulos G, Pollard TCB, Andrade AJ (2018) Factors increasing risk of failure following hip arthroscopy: A case control study. J Hip Preserv Surg 5(3):240–246Google Scholar
  47. 47.
    Weber MA, Merle C, Rehnitz C, Gotterbarm T (2016) Moderne radiologische Bildgebung der Arthrose des Hüftgelenks unter Berücksichtigung der Präarthrosen. Rofo 188(7):635–651CrossRefGoogle Scholar
  48. 48.
    Schmaranzer F, Klauser A, Kogler M, Henninger B, Forstner T, Reichkendler M, Schmaranzer E (2015) Diagnostic performance of direct traction MR arthrography of the hip: Detection of chondral and labral lesions with arthroscopic comparison. Eur Radiol 25(6):1721–1730CrossRefGoogle Scholar
  49. 49.
    Chung CB, Isaza IL, Angulo M, Boucher R, Hughes T (2005) MR arthrography of the knee: How, why, when. Radiol Clin North Am 43(4):733–746CrossRefGoogle Scholar
  50. 50.
    Moser T, Moussaoui A, Dupuis M, Douzal V, Dosch JC (2008) Anterior approach for knee arthrography: Tolerance evaluation and comparison of two routes. Radiology 246(1):193–197CrossRefGoogle Scholar
  51. 51.
    Kramer J, Stiglbauer R, Engel A, Prayer I, Imhof H (1992) MR contrast arthrography (MRA) in osteo-chondrosis dissecans. J Comput Assist Tomogr 16:254–260CrossRefGoogle Scholar
  52. 52.
    Gagliardi JA, Chung EM, Chandnani VP (1994) Detection and staging of chondromalacia patellae: Relative efficacies of conventional MR imaging, MR arthrography and CT arthrography. AJR Am J Roentgenol 163:629–636CrossRefGoogle Scholar
  53. 53.
    Vande Berg BC, Lecouvet FE, Poilvache P, Jamart J, Materne R, Lengele B, Maldague B, Malghem J (2002) Assessment of knee cartilage in cadavers with dual-detector spiral CT arthrography and MR imaging. Radiology 222(2):430–436CrossRefGoogle Scholar
  54. 54.
    Sciulli RL, Boutin RD, Brown RR et al (1999) Evaluation of the postoperative meniscus of the knee: A study comparing conventional arthrography, conventional MR imaging, MR arthrography with iodinated contrast material and MR arthrography with gadoliniumbased contrast material. Skeletal Radiol 28:508–514CrossRefGoogle Scholar
  55. 55.
    Schmid MR, Pfirrmann CW, Hodler J, Vienne P, Zanetti M (2003) Cartilage lesions in the ankle joint: Comparison of MR arthrography and CT arthrography. Skeletal Radiol 32(5):259–265CrossRefGoogle Scholar
  56. 56.
    Kirschke JS, Braun S, Baum T, Holwein C, Schaeffeler C, Imhoff AB, Rummeny EJ, Woertler K, Jungmann PM (2016) Diagnostic value of CT arthrography for evaluation of osteochondral lesions at the ankle. Biomed Res Int.  https://doi.org/10.1155/2016/3594253 Google Scholar
  57. 57.
    Kramer J, Stiglbauer R, Engel A et al (1992) MR contrast arthrography (MRA) in osteochondritis dissecans. J Comput Assist Tomogr 16:254–260CrossRefGoogle Scholar
  58. 58.
    Jungmann PM, Baum T, Schaeffeler C, Sauerschnig M, Brucker PU, Mann A, Ganter C, Bieri O, Rummeny EJ, Woertler K, Bauer JS (2015) 3.0T MR imaging of the ankle: Axial traction for morphological cartilage evaluation, quantitative T2 mapping and cartilage diffusion imaging-A preliminary study. Eur J Radiol 84(8):1546–1554CrossRefGoogle Scholar

Copyright information

© Springer Medizin Verlag GmbH, ein Teil von Springer Nature 2019

Authors and Affiliations

  • B. Klaan
    • 1
    Email author
  • F. Wuennemann
    • 2
  • L. Kintzelé
    • 2
  • A. S. Gersing
    • 3
  • M.-A. Weber
    • 1
  1. 1.Institut für Diagnostische und Interventionelle Radiologie, Kinder- und NeuroradiologieUniversitätsmedizin RostockRostockDeutschland
  2. 2.Diagnostische und Interventionelle RadiologieUniversitätsklinikum HeidelbergHeidelbergDeutschland
  3. 3.Institut für Diagnostische und Interventionelle Radiologie, Klinikum rechts der IsarTechnische Universität MünchenMünchenDeutschland

Personalised recommendations