Advertisement

Der Radiologe

, Volume 59, Issue 8, pp 692–699 | Cite as

Update: Klinische Knorpelbildgebung – Teil 1

Technische Aspekte
  • C. GlaserEmail author
  • A. Heuck
  • A. Horng
Leitthema
  • 221 Downloads

Zusammenfassung

Hintergrund

Die Beantwortung therapierelevanter klinischer Fragen erfordert eine zuverlässige, konsistente Darstellung des Gelenkknorpels in der Bildgebung.

Material und Methoden

Auf Basis der verfügbaren Literatur und Erfahrungen im eigenen Arbeitsbereich werden technische Standards und Entwicklungen der bildgebenden Routinediagnostik des Knorpels zusammengefasst.

Ergebnisse

Die von der Bildgebung zu beantwortenden Fragen betreffen die flächenhafte Ausdehnung und Tiefe, die Identifizierung der knöchernen und knorpeligen Anteile einer Knorpelläsion sowie ihre Lokalisation im Kompartiment, die Lage eventuell ausgesprengter Fragmente und möglicherweise vorhandene begleitende meniskale, ligamentäre oder degenerative Veränderungen. Grundlage der Knorpelbildgebung in der Routinediagnostik ist die Magnetresonanztomographie (MRT) mit moderat T2-gewichteten, teils auch Protonendichte(PD)-gewichteten fettunterdrückten Turbo-Spin-Echo-Sequenzen. Für die Beurteilung anatomisch bedingt dünner Knorpelschichten sind die direkte MR- oder die CT-Arthrographie bildgebender Goldstandard. Fortschritte in Spulen- und Sequenztechnik, zunehmende Verfügbarkeit von 3‑T-Geräten und zunehmend ausgefeilte Beschleunigungstechniken für die Datenakquisition und -aufbereitung ermöglichen bei der MRT eine zunehmend hohe räumliche Auflösung bei robusten Kontrasten und akzeptablen Messzeiten.

Diskussion

Die vielfältigen Entwicklungen in der bildgebenden Technik erfordern eine bewusste Selektion durch den Radiologen im Hinblick auf die klinische Fragestellung.

Schlüsselwörter

Gelenkknorpel Magnetresonanztomographie Computertomographie-Arthrographie Spulen Sequenzen 

Update: clinical imaging of cartilage—part 1

Technical aspects

Abstract

Background

In order to answer clinical therapy-oriented questions, reliable and consistent depiction of articular cartilage across technical platforms is necessary.

Materials and methods

Technical standards and developments in cartilage imaging are summarized based on current literature and experience from clinical daily routine.

Results

Clinical questions that need to be answered relate to cross-sectional extent, depth, differentiating cartilaginous from bony components of a lesion and to the lesion’s location within the compartment. If present, displaced fragments, concomitant meniscal, ligamentous and/or degenerative lesions should be identified. To date, magnetic resonance imaging (MRI) is the workhorse of cartilage imaging and is largely based on moderately T2-weighted and also proton-density (PD)-weighted fat-suppressed turbo-spin-echo sequences. Direct MR- and CT-arthrography are the gold standard to evaluate thin cartilage layers. Recent advances in coil and MR sequence design, increased availability of 3T-MR scanners and more and more sophisticated acceleration techniques allow for better spatial resolution and more robust image contrast at acceptable scan times.

Discussion

As abundant as current developments in clinical routine cartilage imaging may be, the radiologist must carefully select the approach best suited to answering the clinical questions.

Keywords

Joint cartilage Magnetic resonance imaging Computed tomography arthrography Coils Sequences 

Notes

Einhaltung ethischer Richtlinien

Interessenkonflikt

C. Glaser, A. Heuck und A. Horng geben an, dass kein Interessenkonflikt besteht.

Für diesen Beitrag wurden von den Autoren keine Studien an Menschen oder Tieren durchgeführt. Für die aufgeführten Studien gelten die jeweils dort angegebenen ethischen Richtlinien.

Literatur

  1. 1.
    Richter DL, Schenck RC Jr., Wascher DC, Treme G (2016) Knee articular cartilage repair and restoration techniques: a review of the literature. Sports Health 8:153–160.  https://doi.org/10.1177/1941738115611350 CrossRefGoogle Scholar
  2. 2.
    Hunziker EB, Lippuner K, Keel MJ, Shintani N (2015) An educational review of cartilage repair: precepts & practice—myths & misconceptions—progress & prospects. Osteoarthritis Cartilage 23:334–350. https://doi.org/10.1016/j.joca .2014.12.011CrossRefGoogle Scholar
  3. 3.
    Potter HG, Linklater JM, Allen AA, Hannafin JA, Haas SB (1998) Magnetic resonance imaging of articular cartilage in the knee. An evaluation with use of fast-spin-echo imaging. J Bone Joint Surg Am 80:1276–1284CrossRefGoogle Scholar
  4. 4.
    Kijowski R, Stanton P, Fine J, De Smet A (2006) Subchondral bone marrow edema in patients with degeneration of the articular cartilage of the knee joint. Radiology 238:943–949.  https://doi.org/10.1148/radiol.2382050122 CrossRefGoogle Scholar
  5. 5.
    Glaser C (2006) Imaging of cartilage. Radiologe 46:16–25.  https://doi.org/10.1007/s00117-005-1287-x CrossRefGoogle Scholar
  6. 6.
    Kijowski R et al (2009) Comparison of 1.5- and 3.0-T MR imaging for evaluating the articular cartilage of the knee joint. Radiology 250:839–848.  https://doi.org/10.1148/radiol.2503080822 CrossRefGoogle Scholar
  7. 7.
    Eagle S, Potter HG, Koff MF (2017) Morphologic and quantitative magnetic resonance imaging of knee articular cartilage for the assessment of post-traumatic osteoarthritis. J Orthop Res 35:412–423.  https://doi.org/10.1002/jor.23345 CrossRefGoogle Scholar
  8. 8.
    Zuo J, Bolding M, Twieg DB (2007) Validation of V‑SS-PARSE for single-shot flow measurement. Magn Reson Imaging 25:335–340.  https://doi.org/10.1016/j.mri.2006.09.010 CrossRefGoogle Scholar
  9. 9.
    Jung JY et al (2013) Knee derangements: comparison of isotropic 3D fast spin-echo, isotropic 3D balanced fast field-echo, and conventional 2D fast spin-echo MR imaging. Radiology 268:802–813.  https://doi.org/10.1148/radiol.13121990 CrossRefGoogle Scholar
  10. 10.
    Glaser C et al (2015) Understanding 3D TSE sequences: advantages, disadvantages, and application in MSK imaging. Semin Musculoskelet Radiol 19:321–327.  https://doi.org/10.1055/s-0035-1563732 CrossRefGoogle Scholar
  11. 11.
    Fritz J et al (2018) 10-Min 3D Turbo Spin Echo MRI of the Knee in Children: Arthroscopy-Validated Accuracy for the Diagnosis of Internal Derangement. J Magn Reson Imaging.  https://doi.org/10.1002/jmri.26241 Google Scholar
  12. 12.
    Fritz J, Raithel E, Thawait GK, Gilson W, Papp DF (2016) Six-fold acceleration of high-spatial resolution 3D SPACE MRI of the knee through incoherent k‑space Undersampling and iterative reconstruction-first experience. Invest Radiol 51:400–409.  https://doi.org/10.1097/RLI.0000000000000240 CrossRefGoogle Scholar
  13. 13.
    Altahawi FF, Blount KJ, Morley NP, Raithel E, Omar IM (2017) Comparing an accelerated 3D fast spin-echo sequence (CS-SPACE) for knee 3‑T magnetic resonance imaging with traditional 3D fast spin-echo (SPACE) and routine 2D sequences. Skelet Radiol 46:7–15.  https://doi.org/10.1007/s00256-016-2490-8 CrossRefGoogle Scholar
  14. 14.
    Henninger B et al (2018) Evaluation of an accelerated 3D SPACE sequence with compressed sensing and free-stop scan mode for imaging of the knee. Eur J Radiol 102:74–82.  https://doi.org/10.1016/j.ejrad.2018.03.001 CrossRefGoogle Scholar
  15. 15.
    Sutter R et al (2014) Hip MRI: how useful is intraarticular contrast material for evaluating surgically proven lesions of the labrum and articular cartilage? Ajr Am J Roentgenol 202:160–169.  https://doi.org/10.2214/AJR.12.10266 CrossRefGoogle Scholar
  16. 16.
    Magee T (2015) Comparison of 3.0-T MR vs 3.0-T MR arthrography of the hip for detection of acetabular labral tears and chondral defects in the same patient population. Br J Radiol 88:20140817.  https://doi.org/10.1259/bjr.20140817 CrossRefGoogle Scholar
  17. 17.
    Pfirrmann CW, Duc SR, Zanetti M, Dora C, Hodler J (2008) MR arthrography of acetabular cartilage delamination in femoroacetabular cam impingement. Radiology 249:236–241.  https://doi.org/10.1148/radiol.2491080093 CrossRefGoogle Scholar
  18. 18.
    Anderson SE, Siebenrock KA, Mamisch TC, Tannast M (2009) Femoroacetabular impingement magnetic resonance imaging. Top Magn Reson Imaging 20:123–128.  https://doi.org/10.1097/RMR.0b013e3181d99459 CrossRefGoogle Scholar
  19. 19.
    Schmaranzer F et al (2015) Diagnostic performance of direct traction MR arthrography of the hip: detection of chondral and labral lesions with arthroscopic comparison. Eur Radiol 25:1721–1730.  https://doi.org/10.1007/s00330-014-3534-x CrossRefGoogle Scholar
  20. 20.
    Lund B, Nielsen TG, Lind M (2017) Cartilage status in FAI patients—results from the Danish Hip Arthroscopy Registry (DHAR). Sicot J 3:44.  https://doi.org/10.1051/sicotj/2017023 CrossRefGoogle Scholar
  21. 21.
    Beck M, Kalhor M, Leunig M, Ganz R (2005) Hip morphology influences the pattern of damage to the acetabular cartilage: femoroacetabular impingement as a cause of early osteoarthritis of the hip. J Bone Joint Surg Br 87:1012–1018.  https://doi.org/10.1302/0301-620X.87B7.15203 CrossRefGoogle Scholar
  22. 22.
    Sebro R, Oliveira A, Palmer WE (2014) MR arthrography of the shoulder: technical update and clinical applications. Semin Musculoskelet Radiol 18:352–364.  https://doi.org/10.1055/s-0034-1384825 CrossRefGoogle Scholar
  23. 23.
    Kadi R, Milants A, Shahabpour M (2017) Shoulder anatomy and normal variants. J Belg Soc Radiol 101:3.  https://doi.org/10.5334/jbr-btr.1467 CrossRefGoogle Scholar
  24. 24.
    Spencer BA, Dolinskas CA, Seymour PA, Thomas SJ, Abboud JA (2013) Glenohumeral articular cartilage lesions: prospective comparison of non-contrast magnetic resonance imaging and findings at arthroscopy. Arthroscopy 29:1466–1470.  https://doi.org/10.1016/j.arthro.2013.05.023 CrossRefGoogle Scholar
  25. 25.
    De Wilde LF et al (2004) About the variability of the shape of the glenoid cavity. Surg Radiol Anat 26:54–59.  https://doi.org/10.1007/s00276-003-0167-1 CrossRefGoogle Scholar
  26. 26.
    Omoumi P, Rubini A, Dubuc JE, Vande Berg BC, Lecouvet FE (2015) Diagnostic performance of CT-arthrography and 1.5T MR-arthrography for the assessment of glenohumeral joint cartilage: a comparative study with arthroscopic correlation. Eur Radiol 25:961–969.  https://doi.org/10.1007/s00330-014-3469-2 CrossRefGoogle Scholar
  27. 27.
    Gersing AS et al (2017) Evaluation of chondrocalcinosis and associated knee joint degeneration using MR imaging: data from the osteoarthritis initiative. Eur Radiol 27:2497–2506.  https://doi.org/10.1007/s00330-016-4608-8 CrossRefGoogle Scholar
  28. 28.
    Misra D et al (2015) CT imaging for evaluation of calcium crystal deposition in the knee: initial experience from the Multicenter Osteoarthritis (MOST) study. Osteoarthritis Cartilage 23:244–248. https://doi.org/10.1016/j.joca .2014.10.009CrossRefGoogle Scholar
  29. 29.
    Dirim B et al (2013) Relationship between the degeneration of the cruciate ligaments and calcium pyrophosphate dihydrate crystal deposition: anatomic, radiologic study with histologic correlation. Clin Imaging 37:342–347.  https://doi.org/10.1016/j.clinimag.2012.03.002 CrossRefGoogle Scholar
  30. 30.
    Abreu M et al (2004) Calcification in calcium pyrophosphate dihydrate (CPPD) crystalline deposits in the knee: anatomic, radiographic, MR imaging, and histologic study in cadavers. Skeletal Radiol 33:392–398.  https://doi.org/10.1007/s00256-004-0767-9 CrossRefGoogle Scholar
  31. 31.
    Abhishek A et al (2016) Does chondrocalcinosis associate with a distinct radiographic phenotype of osteoarthritis in knees and hips? A case-control study. Arthritis Care Res (hoboken) 68:211–216.  https://doi.org/10.1002/acr.22652 CrossRefGoogle Scholar
  32. 32.
    Jarraya M et al (2014) Susceptibility artifacts detected on 3T MRI of the knee: frequency, change over time and associations with radiographic findings: data from the joints on glucosamine study. Osteoarthritis Cartilage 22:1499–1503. https://doi.org/10.1016/j.joca .2014.04.014CrossRefGoogle Scholar
  33. 33.
    Sakamoto FA, Winalski CS, Schils JP, Parker RD, Polster JM (2011) Vacuum phenomenon: prevalence and appearance in the knee with 3 T magnetic resonance imaging. Skeletal Radiol 40:1275–1285.  https://doi.org/10.1007/s00256-011-1192-5 CrossRefGoogle Scholar

Copyright information

© Springer Medizin Verlag GmbH, ein Teil von Springer Nature 2019

Authors and Affiliations

  1. 1.Radiologisches Zentrum München (RZM)MünchenDeutschland

Personalised recommendations