Advertisement

Biochemische Knorpeldiagnostik – Update 2019

  • S. TrattnigEmail author
  • M. Raudner
  • M. Schreiner
  • F. Roemer
  • K. Bohndorf
Leitthema

Zusammenfassung

Hintergrund

Die Knorpeldiagnostik mittels Magnetresonanztomographie (MRT) ist tägliche Routine. Biochemische MR-Techniken zur Beurteilung von Knorpelschäden sind für eine optimale Therapieplanung alternativlos.

Ziel

Diese Übersichtsarbeit ist ein Update bezüglich moderner Knorpelbildgebung mittels biochemischer MR-Techniken. Es werden deren klinische Anwendungsmöglichkeiten sowie Vorteile gegenüber der morphologischen MR-Bildgebung aufgezeigt.

Material und Methoden

Es erfolgte eine Literaturrecherche zu den klinischen Anwendungsmöglichkeiten der verschiedenen biochemischen MR-Techniken in Ergänzung zur morphologischen MR-Bildgebung.

Ergebnisse

Während T2-Mapping eine einfache und auf jedem MR-Gerät installierbare Technik mit relativ kurzer Untersuchungszeit ist, stellt die T1rho-Methode eine technisch aufwändigere und nicht auf allen MR-Geräten verfügbare Anwendung dar. Die dGEMRIC-Technik kann auf allen Feldstärken eingesetzt werden, sie wurde aber in Europa durch die rezente Entscheidung der Europäischen Arzneimittebehörde (EMA), die linearen MR-Kontrastmittel vom Markt zu nehmen, einer Denkpause unterworfen. Die Natriumbildgebung ist die sensitivste Glykosaminoglykan(GAG)-spezifische Methode, ist aber auf 7 T limitiert. Knorpeldiagnostik mittels biochemischer MRT bedeutet den Sprung von der qualitativen, auf Kontrastbildern beruhenden hin zur quantitativen MRT. Neben der Früherkennung von Knorpeldegenerationen liefert die biochemische MRT auch prädiktive Marker.

Schlussfolgerung

Die biochemische MR-Knorpelbildgebung spielt sowohl in der Frühdiagnostik als auch in der Prädiktion eine zunehmend wichtige Rolle in der klinischen Diagnostik. In der Knorpelersatztherapie erlaubt sie eine Qualitätsbeurteilung des Erfolgs unterschiedlicher therapeutischer Konzepte des Knorpelersatzes.

Schlüsselwörter

Kniegelenk Arthrose Glykosaminoglykan Magnetresonanztomographie Kontrastmittel 

Biochemical cartilage imaging—update 2019

Abstract

Background

Cartilage imaging using magnetic resonance imaging (MRI) is increasingly used for early detection of cartilage damage. Biochemical MR methods to assess cartilage damage are essential for optimal treatment planning.

Purpose

The aim of this review is to provide an update on advanced cartilage imaging based on biochemical MR techniques. The clinical applications and additional benefits compared to conventional MRI are presented.

Materials and methods

A literature search of PubMed regarding the clinical applications of various biochemical MR methods and morphological MR imaging was performed.

Results

While T2 mapping can be easily implemented on clinical routine MR scanners, the T1rho method is technically more demanding and is not available on all MR scanners. dGEMRIC, which can be performed with all field strengths, is now severely restricted due to the recent decision of the European Medical Agency (EMA) to withdraw linear gadolinium contrast agents from the market because of proven gadolinium deposition in the brain. Sodium imaging is the most sensitive MRI method for glycosaminoglycan (GAG), but is limited to 7 T. In addition to early diagnosis of cartilage degeneration before morphological changes are visible, biochemical MRI offers predictive markers, e.g., effect of lifestyle changes or assessing results of cartilage repair surgery.

Conclusion

Cartilage imaging based on biochemical MRI allows a shift from qualitative to quantitative MRI. Biochemical MRI plays an increasingly important role in the early diagnosis of cartilage degeneration for monitoring of disease-modifying drugs and as predictive imaging biomarker in clinical diagnostics. In cartilage repair, monitoring of the efficacy of different cartilage repair surgery techniques to develop hyaline-like cartilage can be performed with biochemical MRI.

Keywords

Knee joint Arthritis Glycosaminoglycan Magnetic resonance imaging Contrast media 

Notes

Einhaltung ethischer Richtlinien

Interessenkonflikt

S. Trattnig, M. Raudner, M. Schreiner, F. Roemer und K. Bohndorf geben an, dass kein Interessenkonflikt besteht.

Für diesen Beitrag wurden von den Autoren keine Studien an Menschen oder Tieren durchgeführt. Für die aufgeführten Studien gelten die jeweils dort angegebenen ethischen Richtlinien.

Literatur

  1. 1.
    Bashir A, Gray ML, Burstein D (1996) Gd-DTPA(2-) as a measure of cartilage degradation. Magn Reson Med 36:665–673CrossRefGoogle Scholar
  2. 2.
    Bashir A, Gray ML, Boutin RD, Burstein D (1997) Glycosaminoglycan in articular cartilage: In vivo assessment with delayed Gd(DTPA)(2-)-enhanced MR imaging. Radiology 205:551–558CrossRefGoogle Scholar
  3. 3.
    Owman H, Tiderius CJ, Neuman P, Nyquist F, Dahlberg LE (2008) Association between findings on delayed gadolinium-enhanced magnetic resonance imaging of cartilage and future knee osteoarthritis. Arthritis Rheum 58:1727–1730CrossRefGoogle Scholar
  4. 4.
    Owman H, Ericsson YB, Englund M et al (2014) Association between delayed gadolinium-enhanced MRI of cartilage (dGEMRIC) and joint space narrowing and osteophytes: a cohort study in patients with partial meniscectomy with 11 years of follow-up. Osteoarthr Cartil 22:1537–1541CrossRefGoogle Scholar
  5. 5.
    Crema MD, Hunter DJ, Burstein D et al (2013) The relationship between the Kellgren-lawrence grade of radiographic knee osteoarthritis and delayed gadolinium-enhanced Mri of medial Tibiofemoral cartilage (Dgemric): a 1‑year follow-up study. Osteoarthr Cartil 21:179–S80CrossRefGoogle Scholar
  6. 6.
    Crema MD, Hunter DJ, Burstein D et al (2014) Delayed gadolinium-enhanced magnetic resonance imaging of medial Tibiofemoral cartilage and its relationship with meniscal pathology A longitudinal study using 3.0T magnetic resonance imaging. Arthritis Rheumatol 66:1517–1524CrossRefGoogle Scholar
  7. 7.
    Owman H, Tiderius CJ, Ericsson YB, Dahlberg LE (2014) Long-term effect of removal of knee joint loading on cartilage quality evaluated by delayed gadolinium-enhanced magnetic resonance imaging of cartilage. Osteoarthr Cartil 22:928–932CrossRefGoogle Scholar
  8. 8.
    Anandacoomarasamy A, Leibman S, Smith G et al (2012) Weight loss in obese people has structure-modifying effects on medial but not on lateral knee articular cartilage. Ann Rheum Dis 71:26–32CrossRefGoogle Scholar
  9. 9.
    Fleming BC, Oksendahl HL, Mehan WA et al (2010) Delayed gadolinium-enhanced MR imaging of cartilage (dGEMRIC) following ACL injury. Osteoarthr Cartil 18:662–667CrossRefGoogle Scholar
  10. 10.
    Shapiro EM, Borthakur A, Gougoutas A, Reddy R (2002) Na-23 MRI accurately measures fixed charge density in articular cartilage. Magn Reson Med 47:284–291CrossRefGoogle Scholar
  11. 11.
    Borthakur A, Shapiro EM, Beers J, Kudchodkar S, Kneeland JB, Reddy R (2000) Sensitivity of MRI to proteoglycan depletion in cartilage: comparison of sodium and proton MRI. Osteoarthr Cartil 8:288–293CrossRefGoogle Scholar
  12. 12.
    Wheaton AJ, Borthakur A, Shapiro EM et al (2004) Proteoglycan loss in human knee cartilage: Quantitation with sodium MR imaging—Feasibility study. Radiology 231:900–905CrossRefGoogle Scholar
  13. 13.
    Wang LG, Wu Y, Chang G et al (2009) Rapid isotropic 3D-sodium MRI of the knee joint in vivo at 7T. J Magn Reson Imaging 30:606–614CrossRefGoogle Scholar
  14. 14.
    Madelin G, Babb JS, Xia D, Chang G, Jerschow A, Regatte RR (2012) Reproducibility and repeatability of quantitative sodium magnetic resonance imaging in vivo in articular cartilage at 3 T and 7 T. Magn Reson Med 68:841–849CrossRefGoogle Scholar
  15. 15.
    Madelin G, Xia D, Brown R et al (2018) Longitudinal study of sodium MRI of articular cartilage in patients with knee osteoarthritis: initial experience with 16-month follow-up. Eur Radiol 28:133–142CrossRefGoogle Scholar
  16. 16.
    Trattnig S, Welsch GH, Juras V et al (2010) Na-23 MR imaging at 7 T after knee matrix-associated Autologous Chondrocyte transplantation: preliminary results. Radiology 257:175–184CrossRefGoogle Scholar
  17. 17.
    Zbyn S, Stelzeneder D, Welsch GH et al (2012) Evaluation of native hyaline cartilage and repair tissue after two cartilage repair surgery techniques with Na-23 MR imaging at 7 T: initial experience. Osteoarthr Cartil 20:837–845CrossRefGoogle Scholar
  18. 18.
    Zbyn S, Brix MO, Juras V et al (2015) Sodium magnetic resonance imaging of ankle joint in cadaver specimens, volunteers, and patients after different cartilage repair techniques at 7 T initial results. Invest Radiol 50:246–254CrossRefGoogle Scholar
  19. 19.
    Krusche-Mandl I, Schmitt B, Zak L et al (2012) Long-term results 8 years after autologous osteochondral transplantation: 7 T gagCEST and sodium magnetic resonance imaging with morphological and clinical correlation. Osteoarthr Cartil 20:357–363CrossRefGoogle Scholar
  20. 20.
    Lee JS, Parasoglou P, Xia D, Jerschow A, Regatte RR (2013) Uniform magnetization transfer in chemical exchange saturation transfer magnetic resonance imaging. Sci Rep 3.  https://doi.org/10.1038/srep01707 CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Windschuh J, Zaiss M, Ehses P, Lee JS, Jerschow A, Regatte RR (2019) Assessment of frequency drift on CEST MRI and dynamic correction: application to gagCEST at 7 T. Magn Reson Med 81:573–582CrossRefGoogle Scholar
  22. 22.
    Schreiner MM, Zbyn S, Schmitt B et al (2016) Reproducibility and regional variations of an improved gagCEST protocol for the in vivo evaluation of knee cartilage at 7 T. Magn Reson Mater Phys Biol Med 29:513–521CrossRefGoogle Scholar
  23. 23.
    Singh A, Haris M, Cai KJ et al (2012) Chemical exchange saturation transfer magnetic resonance imaging of human knee cartilage at 3 T and 7 T. Magn Reson Med 68:588–594CrossRefGoogle Scholar
  24. 24.
    Ling W, Regatte RR, Navon G, Jerschow A (2008) Assessment of glycosaminoglycan concentration in vivo by chemical exchange-dependent saturation transfer (gagCEST). Proc Natl Acad Sci USA 105:2266–2270CrossRefGoogle Scholar
  25. 25.
    Schmitt B, Zbyn S, Stelzeneder D et al (2011) Cartilage quality assessment by using Glycosaminoglycan chemical exchange saturation transfer and na-23 MR imaging at 7 T. Radiology 260:257–264CrossRefGoogle Scholar
  26. 26.
    Koller U, Apprich S, Schmitt B, Windhager R, Trattnig S (2017) Evaluating the cartilage adjacent to the site of repair surgery with glycosaminoglycan-specific magnetic resonance imaging. Int Orthop 41:969–974CrossRefGoogle Scholar
  27. 27.
    Brinkhof S, Nizak R, Khlebnikov V, Prompers JJ, Klomp DWJ, Saris DBF (2018) Detection of early cartilage damage: feasibility and potential of gagCEST imaging at 7T. Eur Radiol 28:2874–2881CrossRefGoogle Scholar
  28. 28.
    Mosher TJ, Dardzinski BJ (2004) Cartilage MRI T2 relaxation time mapping: Overview and applications. Semin Musculoskelet Radiol 8:355–368CrossRefGoogle Scholar
  29. 29.
    Smith HE, Mosher TJ, Dardzinski BJ et al (2001) Spatial variation in cartilage T2 of the knee. J Magn Reson Imaging 14:50–55CrossRefGoogle Scholar
  30. 30.
    Baum T, Joseph GB, Arulanandan A et al (2012) Association of magnetic resonance imaging-based knee cartilage T2 measurements and focal knee lesions with knee pain: data from the Osteoarthritis Initiative. Arthritis Care Res (hoboken) 64:248–255CrossRefGoogle Scholar
  31. 31.
    Mosher TJ, Liu Y, Yang QX et al (2004) Age dependency of cartilage magnetic resonance imaging T2 relaxation times in asymptomatic women. Arthritis Rheum 50:2820–2828CrossRefGoogle Scholar
  32. 32.
    Mosher TJ, Collins CM, Smith HE et al (2004) Effect of gender on in vivo cartilage magnetic resonance imaging T2 mapping. J Magn Reson Imaging 19:323–328CrossRefGoogle Scholar
  33. 33.
    Baum T, Joseph GB, Nardo L et al (2013) Correlation of magnetic resonance imaging-based knee cartilage T2 measurements and focal knee lesions with body mass index: thirty-six-month followup data from a longitudinal, observational multicenter study. Arthritis Care Res (hoboken) 65:23–33CrossRefGoogle Scholar
  34. 34.
    Serebrakian AT, Poulos T, Liebl H et al (2015) Weight loss over 48 months is associated with reduced progression of cartilage T2 relaxation time values: data from the osteoarthritis initiative. J Magn Reson Imaging 41:1272–1280CrossRefGoogle Scholar
  35. 35.
    Friedrich KM, Shepard T, Chang G et al (2010) Does joint alignment affect the T2 values of cartilage in patients with knee osteoarthritis? Eur Radiol 20:1532–1538CrossRefGoogle Scholar
  36. 36.
    Mosher TJ, Smith HE, Collins C et al (2005) Change in knee cartilage T2 at MR imaging after running: A feasibility study. Radiology 234:245–249CrossRefGoogle Scholar
  37. 37.
    Mosher TJ, Liu Y, Torok CM (2010) Functional cartilage MRI T2 mapping: evaluating the effect of age and training on knee cartilage response to running. Osteoarthr Cartil 18:358–364CrossRefGoogle Scholar
  38. 38.
    Hovis KK, Stehling C, Souza RB et al (2011) Physical activity is associated with magnetic resonance imaging-based knee cartilage T2 measurements in asymptomatic subjects with and those without osteoarthritis risk factors. Arthritis Rheum 63:2248–2256CrossRefGoogle Scholar
  39. 39.
    Stehling C, Liebl H, Krug R et al (2010) Patellar cartilage: T2 values and morphologic abnormalities at 3.0-T MR imaging in relation to physical activity in asymptomatic subjects from the osteoarthritis initiative. Radiology 254:509–520CrossRefGoogle Scholar
  40. 40.
    Lin W, Alizai H, Joseph GB et al (2013) Physical activity in relation to knee cartilage T2 progression measured with 3 T MRI over a period of 4 years: data from the Osteoarthritis Initiative. Osteoarthr Cartil 21:1558–1566CrossRefGoogle Scholar
  41. 41.
    Kijowski R, Blankenbaker DG, del Rio AM, Baer GS, Graf BK (2013) Evaluation of the articular cartilage of the knee joint: value of adding a T2 mapping sequence to a routine MR imaging protocol. Radiology 267:503–513CrossRefGoogle Scholar
  42. 42.
    Welsch GH, Mamisch TC, Domayer SE et al (2008) Cartilage T2 assessment at 3‑T MR imaging: in vivo differentiation of normal hyaline cartilage from reparative tissue after two cartilage repair procedures—initial experience. Radiology 247:154–161CrossRefGoogle Scholar
  43. 43.
    Trattnig S, Mamisch TC, Welsch GH et al (2007) Quantitative T2 mapping of matrix-associated autologous chondrocyte transplantation at 3 Tesla: an in vivo cross-sectional study. Invest Radiol 42:442–448CrossRefGoogle Scholar
  44. 44.
    Duvvuri U, Reddy R, Patel SD, Kaufman JH, Kneeland JB, Leigh JS (1997) T‑1 rho-relaxation in articular cartilage: Effects of enzymatic degradation. Magn Reson Med 38:863–867CrossRefGoogle Scholar
  45. 45.
    Mlynarik V, Szomolanyi P, Toffanin R, Vittur F, Trattnig S (2004) Transverse relaxation mechanisms in articular cartilage. J Magn Reson 169:300–307CrossRefGoogle Scholar
  46. 46.
    Regatte RR, Akella SVS, Lonner JH, Kneeland JB, Reddy R (2006) T‑1p relaxation mapping in human osteoarthritis (OA) cartilage: Comparison of T‑1p with T‑2. J Magn Reson Imaging 23:547–553CrossRefGoogle Scholar
  47. 47.
    Koskinen SK, YlaOutinen H, Aho HJ, Komu MES (1997) Magnetization transfer and spin lock MR imaging of patellar cartilage degeneration at 0.1 T. Acta Radiol 38:1071–1075CrossRefGoogle Scholar
  48. 48.
    Duvvuri U, Kudchodkar S, Reddy R, Leigh JS (2002) T‑1 rho relaxation can assess longitudinal proteoglycan loss from articular cartilage in vitro. Osteoarthr Cartil 10:838–844CrossRefGoogle Scholar
  49. 49.
    Menezes NM, Gray ML, Hartke JR, Burstein D (2004) T‑2 and T‑1, MRI in articular cartilage systems. Magn Reson Med 51:503–509CrossRefGoogle Scholar
  50. 50.
    Mlynarik V, Trattnig S, Huber M, Zembsch A, Imhof H (1999) The role of relaxation times in monitoring proteoglycan depletion in articular cartilage. J Magn Reson Imaging 10:497–502CrossRefGoogle Scholar
  51. 51.
    Stahl R, Luke A, Li XJ et al (2009) T1rho, T‑2 and focal knee cartilage abnormalities in physically active and sedentary healthy subjects versus early OA patients—a 3.0-Tesla MRI study. Eur Radiol 19:132–143CrossRefGoogle Scholar
  52. 52.
    Wang LG, Regatte RR (2014) Quantitative mapping of human cartilage at 3.0T: parallel changes in T‑2, T‑1p, and dGEMRIC. Acad Radiol 21:463–471CrossRefGoogle Scholar
  53. 53.
    Wang LG, Vieira RL, Rybak LD et al (2013) Relationship between knee alignment and T1 rho values of articular cartilage and menisci in patients with knee osteoarthritis. Eur J Radiol 82:1946–1952CrossRefGoogle Scholar
  54. 54.
    Thuillier DU, Souza RB, Wu S, Luke A, Li XJ, Feeley BT (2013) T‑1 rho imaging demonstrates early changes in the lateral patella in patients with Patellofemoral pain and Maltracking. Am J Sports Med 41:1813–1818CrossRefGoogle Scholar
  55. 55.
    Souza RB, Feeley BT, Zarins ZA, Link TM, Li XJ, Majumdar S (2013) T1rho MRI relaxation in knee OA subjects with varying sizes of cartilage lesions. Knee 20:113–119CrossRefGoogle Scholar
  56. 56.
    Zarins ZA, Bolbos RI, Pialat JB et al (2010) Cartilage and meniscus assessment using T1rho and T2 measurements in healthy subjects and patients with osteoarthritis. Osteoarthr Cartil 18:1408–1416CrossRefGoogle Scholar
  57. 57.
    Bolbos RI, Link TM, Ma CB, Majumdar S, Li X (2009) T1 rho relaxation time of the meniscus and its relationship with T1 rho of adjacent cartilage in knees with acute ACL injuries at 3 T. Osteoarthr Cartil 17:12–18CrossRefGoogle Scholar
  58. 58.
    Li XJ, Kuo D, Theologis A et al (2011) Cartilage in anterior cruciate ligament-reconstructed knees: MR imaging T1(rho) and T2-initial experience with 1‑year follow-up. Radiology 258:505–514CrossRefGoogle Scholar

Copyright information

© Springer Medizin Verlag GmbH, ein Teil von Springer Nature 2019

Authors and Affiliations

  • S. Trattnig
    • 1
    Email author
  • M. Raudner
    • 1
  • M. Schreiner
    • 2
  • F. Roemer
    • 3
  • K. Bohndorf
    • 1
  1. 1.Exzellenzzentrum für Hochfeld MR, Universitätsklinik für Radiologie und NuklearmedizinMedizinische Universität WienWienÖsterreich
  2. 2.Universitätsklinik für Orthopädie und UnfallchirurgieMedizinische Universität WienWienÖsterreich
  3. 3.Radiologisches InstitutUniversitätsklinikum ErlangenErlangenDeutschland

Personalised recommendations