Advertisement

Update: Klinische Knorpelbildgebung – Teil 2

In der Klinik hilfreiche Aspekte
  • C. GlaserEmail author
  • A. Heuck
  • A. Horng
Leitthema

Zusammenfassung

Hintergrund

Die zunehmende Erfahrung mit Therapieverfahren zur Behandlung von Knorpelschäden erfordert eine entsprechend differenzierte Beurteilung des Gelenkknorpels mit seinen pathologischen Veränderungen in der Bildgebung.

Material und Methoden

Auf Basis der verfügbaren Literatur und Erfahrungen im eigenen Arbeitsumfeld werden richtungsweisende Befunde für die Bildanalyse zusammengefasst und am Beispiel einzelner Krankheitsentitäten dargestellt.

Ergebnisse

Wichtig für die Bildanalyse sind v. a. die lokale Ausprägung und topographische Verteilung Knochenmarködem-ähnlicher (BMEP) Signalveränderungen, die sorgfältige Durchmusterung der Knorpelgrenzflächen sowie der klinische und biomechanische Kontext am Patienten. Formales Grading unterstützt die Kommunikation über Befunde, stellt aber nur einen Teilbereich der Läsionsbeurteilung dar. Die Abschätzung der Stabilität einer (osteo)chondralen Läsion ist wichtig für die Therapieplanung. Sie ist immer wieder eine Herausforderung für die bildgebende Diagnostik und profitiert von der Berücksichtigung arthroskopischer Befunde und Kenntnis der histologischen Veränderungen insbesondere bei der Beurteilung juveniler osteochondraler Läsionen.

Diskussion

Sensitivität für oft sehr diskrete Befunde, aber auch Bewusstsein für die Grenzen der Methode sind wichtig, um die Therapierelevanz und prognostische Wertigkeit bildgebender Befunde am Knorpel herauszuarbeiten.

Schlüsselwörter

Knorpel MRT Osteochondral Grading MR-Arthrographie 

Update: Clinical imaging of cartilage—part 2

Aspects helpul in daily clinical practice

Abstract

Background

Imaging-based analysis of articular cartilage and its defects as well as the radiologist have to live up to the more and more specific clinical questions arising from increasing experience with cartilage-dedicated therapies.

Materials and methods

Based on the currently available literature and experience from clinical routine, imaging findings relevant for lesion analysis will be summarized and illustrated by specific pathologies.

Results

Local aspects and topographic distribution of bone marrow edema pattern (BMEP), careful analysis of the cartilage surface and of the subchondral plate as well as the patient’s clinical and biomechanical context are essential for image analysis. Formal grading is helpful to communicate imaging findings, but in itself is not sufficient for a comprehensive analysis. Assessing the stability of a lesion is important for therapy planning. Imaging is helpful to this end, but can be challenging and requires consideration of the arthroscopic and histologic perspective especially when dealing with juvenile osteochondral lesions.

Discussion

In order to maximize the therapeutic and prognostic relevance of findings from cartilage imaging, radiologists need to be sensitive to—often very subtle—imaging clues but at the same time we need to be aware of the limitations of our methods.

Keywords

Cartilage MRI Osteochondral Grading MR-arthrogram 

Notes

Einhaltung ethischer Richtlinien

Interessenkonflikt

C. Glaser, A. Heuck und A. Horng geben an, dass kein Interessenkonflikt besteht.

Für diesen Beitrag wurden von den Autoren keine Studien an Menschen oder Tieren durchgeführt. Für die aufgeführten Studien gelten die jeweils dort angegebenen ethischen Richtlinien.

Literatur

  1. 1.
    Elias DA, White LM, Fithian DC (2002) Acute lateral patellar dislocation at MR imaging: injury patterns of medial patellar soft-tissue restraints and osteochondral injuries of the inferomedial patella. Radiology 225:736–743.  https://doi.org/10.1148/radiol.2253011578 CrossRefPubMedGoogle Scholar
  2. 2.
    Hayes CW, Brigido MK, Jamadar DA, Propeck T (2000) Mechanism-based pattern approach to classification of complex injuries of the knee depicted at MR imaging. Radiographics 20:S121–S134.  https://doi.org/10.1148/radiographics.20.suppl_1.g00oc21s121 CrossRefPubMedGoogle Scholar
  3. 3.
    Rubin DA, Harner CD, Costello JM (2000) Treatable chondral injuries in the knee: frequency of associated focal subchondral edema. Ajr Am J Roentgenol 174:1099–1106.  https://doi.org/10.2214/ajr.174.4.1741099 CrossRefPubMedGoogle Scholar
  4. 4.
    White CL, Chauvin NA, Waryasz GR, March BT, Francavilla ML (2017) MRI of native knee cartilage delamination injuries. Ajr Am J Roentgenol 209:W317–W321.  https://doi.org/10.2214/AJR.16.17708 CrossRefPubMedGoogle Scholar
  5. 5.
    Oeppen RS, Connolly SA, Bencardino JT, Jaramillo D (2004) Acute injury of the articular cartilage and subchondral bone: a common but unrecognized lesion in the immature knee. Ajr Am J Roentgenol 182:111–117.  https://doi.org/10.2214/ajr.182.1.1820111 CrossRefPubMedGoogle Scholar
  6. 6.
    Mohr A (2003) The value of water-excitation 3D FLASH and fat-saturated PDw TSE MR imaging for detecting and grading articular cartilage lesions of the knee. Skelet Radiol 32:396–402.  https://doi.org/10.1007/s00256-003-0635-z CrossRefGoogle Scholar
  7. 7.
    Kijowski R, Stanton P, Fine J, De Smet A (2006) Subchondral bone marrow edema in patients with degeneration of the articular cartilage of the knee joint. Radiology 238:943–949.  https://doi.org/10.1148/radiol.2382050122 CrossRefPubMedGoogle Scholar
  8. 8.
    O’Connor MA, Palaniappan M, Khan N, Bruce CE (2002) Osteochondritis dissecans of the knee in children. A comparison of MRI and arthroscopic findings. J Bone Joint Surg Br 84:258–262CrossRefGoogle Scholar
  9. 9.
    Kijowski R et al (2008) Juvenile versus adult osteochondritis dissecans of the knee: appropriate MR imaging criteria for instability. Radiology 248:571–578.  https://doi.org/10.1148/radiol.2482071234 CrossRefPubMedGoogle Scholar
  10. 10.
    Adam G, Neuerburg J, Peiss J, Bohndorf K, Gunther RW (1994) The magnetic resonance tomography of osteochondrosis dissecans of the knee joint after intravenous gadolinium-DTPA administration. Rofo 160:459–464.  https://doi.org/10.1055/s-2008-1032458 CrossRefPubMedGoogle Scholar
  11. 11.
    De Smet AA, Ilahi OA, Graf BK (1997) Untreated osteochondritis dissecans of the femoral condyles: prediction of patient outcome using radiographic and MR findings. Skelet Radiol 26:463–467CrossRefGoogle Scholar
  12. 12.
    Kramer J, Stiglbauer R, Engel A, Prayer L, Imhof H (1992) MR contrast arthrography (MRA) in osteochondrosis dissecans. J Comput Assist Tomogr 16:254–260CrossRefGoogle Scholar
  13. 13.
    Kocher MS, Tucker R, Ganley TJ, Flynn JM (2006) Management of osteochondritis dissecans of the knee: current concepts review. Am J Sports Med 34:1181–1191.  https://doi.org/10.1177/0363546506290127 CrossRefPubMedGoogle Scholar
  14. 14.
    Laor T, Zbojniewicz AM, Eismann EA, Wall EJ (2012) Juvenile osteochondritis dissecans: is it a growth disturbance of the secondary physis of the epiphysis? Ajr Am J Roentgenol 199:1121–1128.  https://doi.org/10.2214/AJR.11.8085 CrossRefPubMedGoogle Scholar
  15. 15.
    Ellermann J et al (2017) Insights into the epiphyseal cartilage origin and subsequent osseous manifestation of juvenile osteochondritis dissecans with a modified clinical MR imaging protocol: a pilot study. Radiology 282:798–806.  https://doi.org/10.1148/radiol.2016160071 CrossRefPubMedGoogle Scholar
  16. 16.
    Zbojniewicz AM, Stringer KF, Laor T, Wall EJ (2015) Juvenile osteochondritis dissecans: correlation between histopathology and MRI. Ajr Am J Roentgenol 205:W114–123.  https://doi.org/10.2214/AJR.14.13579 CrossRefPubMedGoogle Scholar
  17. 17.
    Yonetani Y et al (2010) Histological evaluation of juvenile osteochondritis dissecans of the knee: a case series. Knee Surg Sports Traumatol Arthrosc 18:723–730.  https://doi.org/10.1007/s00167-009-0898-6 CrossRefPubMedGoogle Scholar
  18. 18.
    Uozumi H et al (2009) Histologic findings and possible causes of osteochondritis dissecans of the knee. Am J Sports Med 37:2003–2008.  https://doi.org/10.1177/0363546509346542 CrossRefPubMedGoogle Scholar
  19. 19.
    Wall EJ et al (2008) The healing potential of stable juvenile osteochondritis dissecans knee lesions. J Bone Joint Surg Am 90:2655–2664.  https://doi.org/10.2106/JBJS.G.01103 CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Krause M et al (2013) Healing predictors of stable juvenile osteochondritis dissecans knee lesions after 6 and 12 months of nonoperative treatment. Am J Sports Med 41:2384–2391.  https://doi.org/10.1177/0363546513496049 CrossRefPubMedGoogle Scholar
  21. 21.
    Mills LA, Simpson AH (2012) In vivo models of bone repair. J Bone Joint Surg Br 94:865–874.  https://doi.org/10.1302/0301-620X.94B7.27370 CrossRefPubMedGoogle Scholar
  22. 22.
    Robertson W, Kelly BT, Green DW (2003) Osteochondritis dissecans of the knee in children. Curr Opin Pediatr 15:38–44CrossRefGoogle Scholar
  23. 23.
    Ellermann JM et al (2016) Magnetic resonance imaging of osteochondritis dissecans: validation study for the ICRS classification system. Acad Radiol 23:724–729.  https://doi.org/10.1016/j.acra.2016.01.015 CrossRefPubMedGoogle Scholar
  24. 24.
    Jans LB, Jaremko JL, Ditchfield M, Huysse WC, Verstraete KL (2011) MRI differentiates femoral condylar ossification evolution from osteochondritis dissecans. A new sign. Eur Radiol 21:1170–1179.  https://doi.org/10.1007/s00330-011-2058-x CrossRefPubMedGoogle Scholar
  25. 25.
    Gebarski K, Hernandez RJ (2005) Stage-I osteochondritis dissecans versus normal variants of ossification in the knee in children. Pediatr Radiol 35:880–886.  https://doi.org/10.1007/s00247-005-1507-6 CrossRefPubMedGoogle Scholar
  26. 26.
    Cahill BR, Phillips MR, Navarro R (1989) The results of conservative management of juvenile osteochondritis dissecans using joint scintigraphy. A prospective study. Am J Sports Med 17:601–605.  https://doi.org/10.1177/036354658901700502 (discussion 605–606)CrossRefPubMedGoogle Scholar
  27. 27.
    Harding WG 3rd (1977) Diagnosis of ostechondritis dissecans of the femoral condyles: the value of the lateral x‑ray view. Clin Orthop Relat Res 123:25–26Google Scholar

Copyright information

© Springer Medizin Verlag GmbH, ein Teil von Springer Nature 2019

Authors and Affiliations

  1. 1.Radiologisches Zentrum München (RZM)MünchenDeutschland

Personalised recommendations