Advertisement

Der Radiologe

, Volume 59, Issue 8, pp 722–731 | Cite as

Postoperative Bildgebung fokaler Knorpeldefekte mittels Magnetresonanztomographie

  • F. WuennemannEmail author
  • L. Kintzelé
  • B. Klaan
  • M.-A. Weber
  • H.-U. Kauczor
  • C. Rehnitz
Leitthema
  • 153 Downloads

Zusammenfassung

Hintergrund

Fokale Knorpelschäden sind häufige Pathologien der gewichtstragenden Gelenke. Die klinische Präsentation reicht von symptomlosen Patienten bis hin zu stärksten, schmerzbedingten Einschränkungen der Mobilität. Sie sind ein bedeutender Risikofaktor für die Entwicklung degenerativer Gelenkerkrankungen. Für die Behandlung fokaler Knorpelläsionen stehen dem Orthopäden multiple chirurgische Verfahren zur Verfügung. Muskuloskeletale Radiologen sollen die Grundzüge der operativen Verfahren wie auch die typische postoperative Bildgebung kennen, um zuverlässig Abweichungen von einem normalen postoperativen Verlauf zu erkennen.

Ziel der Arbeit

Ziel dieses Übersichtsartikels ist die Erläuterung der verschiedenen Methoden zur operativen Behandlung fokaler Knorpelschäden und deren typische MR-morphologische Darstellung.

Material und Methoden

Es wurde eine PubMed-Literaturrecherche durchgeführt zu den Stichworten „focal articular cartilage lesions“, „chondral lesions“, „MOCART“, „Microfracture“, „Osteochondral Autograft Transfer“, „mosaicplasty“, „Osteochondral Allograft Transplantation“, „OATS“, „OCT“, „Autologous Chondrocyte Implantation“, „ACI“, „Matrix-Assisted Chondrocyte Implantation“, „Autologous Matrix-induced Chondrogenesis“.

Ergebnisse

Die operativen Methoden zur Behandlung fokaler Knorpelläsionen werden erklärt, und die postoperative Bildgebung wird dargestellt.

Schlüsselwörter

Knorpelläsion Muskuloskeletale Bildgebung Osteodegenerative Veränderungen Postoperative Verlaufsbeurteilung Operationsverfahren 

Magnetic resonance imaging following cartilage repair of focal chondral lesions

Abstract

Background

Focal cartilage lesions are common pathologies of weight-bearing joints. Clinical presentation ranges from asymptomatic patients to severe, pain-related movement deficits. Moreover, focal chondral lesions are risk factors for the development of osteoarthritis. There are various treatment options involving both surgical and nonsurgical treatments. Musculoskeletal radiologists should be aware of the various surgical options as well as the postsurgical imaging characteristics to depict whether the encountered imaging findings reflect the normal postoperative course or are indicative of a treatment failure.

Objectives

We aim to describe the most common surgical procedures for the repair of focal cartilage lesions and their typical postsurgical appearance on MRI studies.

Materials and methods

The literature in PubMed was searched with the terms “focal articular cartilage lesions”, “chondral lesions”, “MOCART”, “Microfracture”, “Osteochondral Autograft Transfer”, “mosaicplasty”, “Osteochondral Allograft Transplantation”, “OATS”, “OCT”, “Autologous Chondrocyte Implantation”, “ACI”, “Matrix-Assisted Chondrocyte Implantation”, “Autologous Matrix-induced Chondrogenesis”.

Results

Surgical methods for the treatment of focal cartilage lesions as well as the MR imaging features are explained.

Keywords

Osteochondral lesions Musculoskeletal imaging Osteodegenerative changes Postoperative treatment evaluation Surgical procedures, operative 

Notes

Einhaltung ethischer Richtlinien

Interessenkonflikt

F. Wuennemann, L. Kintzelé, B. Klaan, M.-A. Weber, H.-U. Kauczor und C. Rehnitz geben an, dass kein Interessenkonflikt besteht.

Für diesen Beitrag wurden von den Autoren keine Studien an Menschen oder Tieren durchgeführt. Für die aufgeführten Studien gelten die jeweils dort angegebenen ethischen Richtlinien.

Literatur

  1. 1.
    Aae TF, Randsborg P‑H, Lurås H et al (2018) Microfracture is more cost-effective than autologous chondrocyte implantation: a review of level 1 and level 2 studies with 5 year follow-up. Knee Surg Sports Traumatol Arthrosc 26:1044–1052.  https://doi.org/10.1007/s00167-017-4802-5 Google Scholar
  2. 2.
    Ahmad CS, Cohen ZA, Levine WN et al (2001) Biomechanical and topographic considerations for autologous osteochondral grafting in the knee. Am J Sports Med 29:201–206.  https://doi.org/10.1177/03635465010290021401 CrossRefGoogle Scholar
  3. 3.
    Alparslan L, Winalski CS, Boutin RD, Minas T (2001) Postoperative magnetic resonance imaging of articular cartilage repair. Semin Musculoskelet Radiol 5:345–363.  https://doi.org/10.1055/s-2001-19044 CrossRefGoogle Scholar
  4. 4.
    Aurich M, Albrecht D, Angele P et al (2016) Treatment of osteochondral lesions in the ankle: a guideline from the group „clinical tissue regeneration“ of the German Society of Orthopaedics and Traumatology (DGOU). Z Orthop Unfall.  https://doi.org/10.1055/s-0042-116330 Google Scholar
  5. 5.
    Årøen A, Løken S, Heir S et al (2017) Articular cartilage lesions in 993 consecutive knee arthroscopies. Am J Sports Med 32:211–215.  https://doi.org/10.1177/0363546503259345 CrossRefGoogle Scholar
  6. 6.
    Benthien JP, Behrens P (2011) The treatment of chondral and osteochondral defects of the knee with autologous matrix-induced chondrogenesis (AMIC): method description and recent developments. Knee Surg Sports Traumatol Arthrosc 19:1316–1319.  https://doi.org/10.1007/s00167-010-1356-1 CrossRefGoogle Scholar
  7. 7.
    Brittberg M (2008) Autologous chondrocyte implantation—technique and long-term follow-up. Injury 39(Suppl 1):S40–S49.  https://doi.org/10.1016/j.injury.2008.01.040 CrossRefGoogle Scholar
  8. 8.
    Brittberg M, Lindahl A, Nilsson A et al (1994) Treatment of deep cartilage defects in the knee with autologous chondrocyte transplantation. N Engl J Med 331:889–895.  https://doi.org/10.1056/NEJM199410063311401 CrossRefGoogle Scholar
  9. 9.
    Brown WE, Potter HG, Marx RG et al (2004) Magnetic resonance imaging appearance of cartilage repair in the knee. Clin Orthop Relat Res 422:214–223.  https://doi.org/10.1097/01.blo.0000129162.36302.4f CrossRefGoogle Scholar
  10. 10.
    Camp CL, Stuart MJ, Krych AJ (2014) Current concepts of articular cartilage restoration techniques in the knee. Sports Health 6:265–273.  https://doi.org/10.1177/1941738113508917 CrossRefGoogle Scholar
  11. 11.
    Chang G, Sherman O, Madelin G et al (2011) MR imaging assessment of articular cartilage repair procedures. Magn Reson Imaging Clin N Am 19:323–337.  https://doi.org/10.1016/j.mric.2011.02.002 CrossRefGoogle Scholar
  12. 12.
    Choi YS, Potter HG, Chun TJ (2008) MR imaging of cartilage repair in the knee and ankle. Radiographics 28:1043–1059.  https://doi.org/10.1148/rg.284075111 CrossRefGoogle Scholar
  13. 13.
    Cole BJ, Pascual-Garrido C, Grumet RC (2009) Surgical management of articular cartilage defects in the knee. J Bone Joint Surg Am 91:1778–1790Google Scholar
  14. 14.
    Curl WW, Krome J, Gordon ES et al (1997) Cartilage injuries: a review of 31,516 knee arthroscopies. Arthroscopy 13:456–460CrossRefGoogle Scholar
  15. 15.
    Falah M, Nierenberg G, Soudry M et al (2010) Treatment of articular cartilage lesions of the knee. Int Orthop 34:621–630.  https://doi.org/10.1007/s00264-010-0959-y CrossRefGoogle Scholar
  16. 16.
    Gao L, Orth P, Cucchiarini M, Madry H (2017) Autologous matrix-induced chondrogenesis: a systematic review of the clinical evidence. Am J Sports Med.  https://doi.org/10.1177/0363546517740575 Google Scholar
  17. 17.
    Gersing AS, Schwaiger BJ, Wörtler K, Jungmann PM (2018) Advanced cartilage imaging for detection of cartilage injuries and osteochondral lesions. Radiologe 58:422–432.  https://doi.org/10.1007/s00117-017-0348-2 CrossRefGoogle Scholar
  18. 18.
    Glenn RE, McCarty EC, Potter HG et al (2006) Comparison of fresh osteochondral autografts and allografts: a canine model. Am J Sports Med 34:1084–1093.  https://doi.org/10.1177/0363546505284846 CrossRefGoogle Scholar
  19. 19.
    Guermazi A, Roemer FW, Alizai H et al (2015) State of the art: MR imaging after knee cartilage repair surgery. Radiology 277:23–43.  https://doi.org/10.1148/radiol.2015141146 CrossRefGoogle Scholar
  20. 20.
    Hangody L, Kish G, Kárpáti Z et al (1997) Arthroscopic autogenous osteochondral mosaicplasty for the treatment of femoral condylar articular defects. A preliminary report. Knee Surg Sports Traumatol Arthrosc 5:262–267.  https://doi.org/10.1007/s001670050061 CrossRefGoogle Scholar
  21. 21.
    Hjelle K, Solheim E, Strand T et al (2002) Articular cartilage defects in 1,000 knee arthroscopies. Arthroscopy 18:730–734.  https://doi.org/10.1053/jars.2002.32839 CrossRefGoogle Scholar
  22. 22.
    Von Keudell A, Atzwanger J, Forstner R et al (2012) Radiological evaluation of cartilage after microfracture treatment: a long-term follow-up study. Eur J Radiol 81:1618–1624.  https://doi.org/10.1016/j.ejrad.2011.04.071 CrossRefGoogle Scholar
  23. 23.
    Kraeutler MJ, Belk JW, Purcell JM, McCarty EC (2018) Microfracture versus Autologous Chondrocyte implantation for articular cartilage lesions in the knee: a systematic review of 5‑year outcomes. Am J Sports Med 46:995–999.  https://doi.org/10.1177/0363546517701912 CrossRefGoogle Scholar
  24. 24.
    Kreuz PC, Erggelet C, Steinwachs MR et al (2006) Is microfracture of chondral defects in the knee associated with different results in patients aged 40 years or younger? Arthroscopy 22:1180–1186.  https://doi.org/10.1016/j.arthro.2006.06.020 CrossRefGoogle Scholar
  25. 25.
    Link TM, Mischung J, Wörtler K et al (2006) Normal and pathological MR findings in osteochondral autografts with longitudinal follow-up. Eur Radiol 16:88–96.  https://doi.org/10.1007/s00330-005-2818-6 CrossRefGoogle Scholar
  26. 26.
    Marlovits S, Singer P, Zeller P et al (2006) Magnetic resonance observation of cartilage repair tissue (MOCART) for the evaluation of autologous chondrocyte transplantation: Determination of interobserver variability and correlation to clinical outcome after 2 years. Eur J Radiol 57:16–23.  https://doi.org/10.1016/j.ejrad.2005.08.007 CrossRefGoogle Scholar
  27. 27.
    Marlovits S, Striessnig G, Resinger CT et al (2004) Definition of pertinent parameters for the evaluation of articular cartilage repair tissue with high-resolution magnetic resonance imaging. Eur J Radiol 52:310–319.  https://doi.org/10.1016/j.ejrad.2004.03.014 CrossRefGoogle Scholar
  28. 28.
    McCoy B, Miniaci A (2012) Osteochondral autograft transplantation/mosaicplasty. J Knee Surg 25:99–108CrossRefGoogle Scholar
  29. 29.
    Nehrer S, Spector M, Minas T (1999) Histologic analysis of tissue after failed cartilage repair procedures. Clin Orthop Relat Res 365:149–162.  https://doi.org/10.1097/00003086-199908000-00020 CrossRefGoogle Scholar
  30. 30.
    Pascual-Garrido C, Moran CJ, Green DW, Cole BJ (2013) Osteochondritis dissecans of the knee in children and adolescents. Curr Opin Pediatr 25:46–51.  https://doi.org/10.1097/MOP.0b013e32835adbf5 CrossRefGoogle Scholar
  31. 31.
    Rath B, Eschweiler J, Betsch M, Gruber G (2017) Cartilage repair of the knee joint. Orthopade 46:919–927.  https://doi.org/10.1007/s00132-017-3463-x CrossRefGoogle Scholar
  32. 32.
    Rehnitz C, Klaan B, Burkholder I et al (2016) Delayed gadolinium-enhanced MRI of cartilage (dGEMRIC) and T2 mapping at 3T MRI of the wrist: Feasibility and clinical application. J Magn Reson Imaging.  https://doi.org/10.1002/jmri.25371 Google Scholar
  33. 33.
    Rehnitz C, Klaan B, Do T et al (2017) Feasibility of gadoteric acid for delayed gadolinium-enhanced MRI of cartilage (dGEMRIC) at the wrist and knee and comparison with Gd-DTPA. J Magn Reson Imaging 46:1433–1440.  https://doi.org/10.1002/jmri.25688 CrossRefGoogle Scholar
  34. 34.
    Rehnitz C, Kuni B, Wuennemann F et al (2017) Delayed gadolinium-enhanced MRI of cartilage (dGEMRIC) and T2 mapping of talar osteochondral lesions: Indicators of clinical outcomes. J Magn Reson Imaging 46:1601–1610.  https://doi.org/10.1002/jmri.25731 CrossRefGoogle Scholar
  35. 35.
    Rehnitz C, Kupfer J, Streich NA et al (2014) Comparison of biochemical cartilage imaging techniques at 3 T MRI. Osteoarthr Cartil 22(020):1732–1742.  https://doi.org/10.1016/j.joca CrossRefGoogle Scholar
  36. 36.
    Robert H (2011) Chondral repair of the knee joint using mosaicplasty. Orthop Traumatol Surg Res 97:418–429.  https://doi.org/10.1016/j.otsr.2011.04.001 CrossRefGoogle Scholar
  37. 37.
    Ronga M, Angeretti G, Ferraro S et al (2014) Imaging of articular cartilage: current concepts. Joints 2:137–140CrossRefGoogle Scholar
  38. 38.
    Salzmann GM, Niemeyer P, Hochrein A et al (2018) Articular cartilage repair of the knee in children and adolescents. Orthop J Sports Med.  https://doi.org/10.1177/2325967118760190 Google Scholar
  39. 39.
    Salzmann GM, Niemeyer P, Steinwachs M et al (2011) Cartilage repair approach and treatment characteristics across the knee joint: a European survey. Arch Orthop Trauma Surg 131:283–291.  https://doi.org/10.1007/s00402-010-1047-x CrossRefGoogle Scholar
  40. 40.
    Schenker H, Wild M, Rath B et al (2017) Current overview of cartilage regeneration procedures. Orthopade 46:907–913.  https://doi.org/10.1007/s00132-017-3474-7 CrossRefGoogle Scholar
  41. 41.
    Volz M, Schaumburger J, Frick H et al (2017) A randomized controlled trial demonstrating sustained benefit of Autologous Matrix-Induced Chondrogenesis over microfracture at five years. Int Orthop 41:797–804.  https://doi.org/10.1007/s00264-016-3391-0 CrossRefGoogle Scholar
  42. 42.
    Wada Y, Watanabe A, Yamashita T et al (2003) Evaluation of articular cartilage with 3D-SPGR MRI after autologous chondrocyte implantation. J Orthop Sci 8:514–517.  https://doi.org/10.1007/s00776-003-0677-z CrossRefGoogle Scholar
  43. 43.
    Walther M, Szeimies U, Gottschalk O (2017) MR imaging after cartilage reconstruction with autologous matrix induced chondrogenesis (AMIC). Foot Ankle Surg 23:44.  https://doi.org/10.1016/j.fas.2017.07.217 CrossRefGoogle Scholar
  44. 44.
    Weber M‑A, Wünnemann F, Jungmann PM et al (2017) Modern cartilage imaging of the ankle. Rofo 189:945–956.  https://doi.org/10.1055/s-0043-110861 CrossRefGoogle Scholar
  45. 45.
    Welsch GH, Zak L, Mamisch TC et al (2009) Three-dimensional magnetic resonance observation of cartilage repair tissue (MOCART) score assessed with an isotropic three-dimensional true fast imaging with steady-state precession sequence at 3.0 Tesla. Invest Radiol 44:603–612.  https://doi.org/10.1097/RLI.0b013e3181b5333c CrossRefGoogle Scholar
  46. 46.
    Welsch GH, Zak L, Mamisch TC et al (2011) Advanced morphological 3D magnetic resonance observation of cartilage repair tissue (MOCART) scoring using a new isotropic 3D proton-density, turbo spin echo sequence with variable flip angle distribution (PD-SPACE) compared to an isotropic 3D steady-state free precession sequence (True-FISP) and standard 2D sequences. J Magn Reson Imaging 33:180–188.  https://doi.org/10.1002/jmri.22399 CrossRefGoogle Scholar
  47. 47.
    Widuchowski W, Widuchowski J, Trzaska T (2007) Articular cartilage defects: study of 25,124 knee arthroscopies. Knee 14:177–182.  https://doi.org/10.1016/j.knee.2007.02.001 CrossRefGoogle Scholar
  48. 48.
    Wuennemann F, Rehnitz C, Weber M‑A (2018) Imaging of the knee following repair of focal articular cartilage lesions. Semin Musculoskelet Radiol 22:377–385.  https://doi.org/10.1055/s-0038-1667301 CrossRefGoogle Scholar
  49. 49.
    Yamashita F, Sakakida K, Suzu F, Takai S (1985) The transplantation of an autogeneic osteochondral fragment for osteochondritis dissecans of the knee. Clin Orthop Relat Res 201:43–50Google Scholar
  50. 50.
    (2018) Protokollempfehlungen der AG Bildgebende Verfahren des Bewegungsapparates (AG BVB) der Deutschen Röntgengesellschaft (DRG) zu Messsequenzen für die Gelenk-MRT. Fortschr Röntgenstr 2018; 190: 179–195Google Scholar

Copyright information

© Springer Medizin Verlag GmbH, ein Teil von Springer Nature 2019

Authors and Affiliations

  • F. Wuennemann
    • 1
    Email author
  • L. Kintzelé
    • 1
  • B. Klaan
    • 2
  • M.-A. Weber
    • 2
  • H.-U. Kauczor
    • 1
  • C. Rehnitz
    • 1
  1. 1.Diagnostische und Interventionelle RadiologieUniversitätsklinikum HeidelbergHeidelbergDeutschland
  2. 2.Institut für Diagnostische und Interventionelle Radiologie, Kinder- und NeuroradiologieUniversitätsmedizin RostockRostockDeutschland

Personalised recommendations