Advertisement

MR-Sicherheitsbewertung von aktiven implantierbaren medizinischen Geräten

  • Sarra Aissani
  • Elmar Laistler
  • Jacques FelblingerEmail author
Leitthema
  • 24 Downloads

Zusammenfassung

Hintergrund

Immer mehr Patienten mit aktiven implantierbaren medizinischen Geräten (AIMDs) benötigen Magnetresonanz(MR)-Untersuchungen. Die Hersteller sind dabei, die MR-Kompatibilität ihrer AIMDs zu verbessern. Dafür werden verschiedenste Messmethoden und numerische Simulationen durchgeführt, um die Risiken in Bezug auf die Magnetresonanztomographie (MRT) zu evaluieren.

Ziele

Dieser Beitrag gibt einen Überblick über die verwendeten Testmethoden, welche die Interaktionen zwischen AIMDs mit Hochfrequenzfeldern und zeitveränderlichen magnetischen Feldgradienten untersuchen.

Material und Methoden

Ein Literaturüberblick über die bekannten Testmethoden für Feldgradienten- und Hochfrequenzexposition von AIMDs mit Anschlussleitungen, insbesondere bei Neurostimulatoren, Cochlea-Implantaten und implantierten Arzneimittelpumpen, wird präsentiert. Der Stand der Technik und vielversprechende Verfahren werden diskutiert.

Ergebnisse

ISO/TS 10974 beschreibt das Design von Hochfrequenz- und Gradienteninjektionsaufbauten für konduktive Materialtests. Zur Messung der induzierten Spannungen und Ströme durch Hochfrequenz- und Gradientenfelder sowie zur Überwachung der AIMDs während MR-Untersuchungen bei In-vitro-Tests wurde eine Vielzahl von Sensordesigns publiziert.

Schlussfolgerung

Die Testmethoden sind so konservativ wie möglich ausgelegt und müssen den ungünstigsten Fall abdecken. Allerdings sind In-vitro-Messungen und Computersimulation weit davon entfernt, jede mögliche Konfiguration in ihrer Komplexität und Einzigartigkeit zu erfassen. Für sicherere MR-Untersuchungen werden in der rezentesten Forschung In-vivo-Testung vor der MR-Untersuchung, parallele Hochfrequenzsendetechniken und neue Sequenzen mit reduziertem Energieeintrag in der Anwesenheit von AIMDs vorgeschlagen.

Schlüsselwörter

Magnetresonanztomographie Funktionsstörung Rektifizierung Erwärmung Kompatibilität 

MR safety assessment of active implanted medical devices. German version

Abstract

Background

Increasing numbers of patients with active implantable medical devices (AIMDs) require magnetic resonance (MR) examinations. The manufacturers are continuing to improve the MR compatibility of their AIMDs. To this end, a variety of measurement methods and numerical simulations are used to evaluate the risks associated with magnetic resonance imaging (MRI).

Objective

In this article, test methods used to investigate interactions between AIMDs with radio frequency fields and time-varying magnetic gradient fields are reviewed.

Materials and methods

A literature review of known test methods for radio frequency and gradient field exposure of AIMDs with leads, in particular for neurostimulators, cochlear implants, and implanted infusion pumps, is presented. The state of the art and promising methods are discussed.

Results

ISO/TS 10974 describes the design of high frequency and gradient injection setups to test conductive materials. A large number of sensor designs have been published to measure the induced voltages and currents through radio frequency and gradient fields and for monitoring AIMDs during MR examinations in in vitro tests.

Conclusion

The test methods should be planned to be as conservative as possible to cover the worst case scenario. However, in vitro measurements and computer simulation are far from being able to cover all possible configurations in their complexity and uniqueness. For safer MR examinations, current research recommends in vivo testing prior to MR, parallel radiofrequency transmission techniques, and new sequences with reduced energy input in the presence of AIMDs.

Keywords

Magnetic resonance imaging Malfunction Rectification Heating Compatibility 

Notes

Einhaltung ethischer Richtlinien

Interessenkonflikt

J. Felblinger ist Gesellschafter von Healtis. Dies hat keine Auswirkung auf den Inhalt dieser Publikation. S. Aissani und E. Laistler geben an, dass kein Interessenkonflikt besteht.

Für diesen Beitrag wurden von den Autoren keine Studien an Menschen oder Tieren durchgeführt. Für die aufgeführten Studien gelten die jeweils dort angegebenen ethischen Richtlinien.

Literatur

  1. 1.
    Angelone LM, Ahveninen J, Belliveau JW, Bonmassar G (2010) Analysis of the role of lead resistivity in specific absorption rate for deep brain stimulator leads at 3T MRI. Ieee Trans Med Imaging 29:1029–1038.  https://doi.org/10.1109/TMI.2010.2040624 CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Barbier T, Aissani S, Weber N, Pasquier C, Felblinger J (2018) A novel MR-compatible sensor to assess active medical device safety: stimulation monitoring, rectified radio frequency pulses, and gradient-induced voltage measurements. Magn Reson Mater Phys Biol Med 31:677–688.  https://doi.org/10.1007/s10334-018-0682-z CrossRefGoogle Scholar
  3. 3.
    Barbier T, Piumatti R, Hecker B, Odille F, Felblinger J, Pasquier C (2014) An RF-induced voltage sensor for investigating pacemaker safety in MRI. Magn Reson Mater Phys Biol Med 27:539–549.  https://doi.org/10.1007/s10334-014-0437-4 CrossRefGoogle Scholar
  4. 4.
    Cabot E, Lloyd T, Christ A, Kainz W, Douglas M, Stenzel G, Wedan S, Kuster N (2013) Evaluation of the RF heating of a generic deep brain stimulator exposed in 1.5 T magnetic resonance scanners. Bioelectromagnetics 34:104–113.  https://doi.org/10.1002/bem.21745 CrossRefPubMedGoogle Scholar
  5. 5.
    Corcoles J, Zastrow E, Kuster N (2017) Optimization-based strategy in multiple-channel magnetic resonance systems operating at 128 MHz to reduce radiofrequency heating induced by active implantable medical devices. XXXIInd General Assembly and Scientific Symposium of the International Union of Radio Science (URSI GASS), 2017 IEEE, Montreal, QC, S 1–3Google Scholar
  6. 6.
    Córcoles J, Zastrow E, Kuster N (2017) On the estimation of the worst-case implant-induced RF-heating in multi-channel MRI. Phys Med Biol 62:4711–4727.  https://doi.org/10.1088/1361-6560/aa641b CrossRefPubMedGoogle Scholar
  7. 7.
    Eryaman Y, Kobayashi N, Moen S, Aman J, Grant A, Vaughan JT, Molnar G, Park MC, Vitek J, Adriany G, Ugurbil K, Harel N (2019) A simple geometric analysis method for measuring and mitigating RF induced currents on deep brain stimulation leads by multichannel transmission/reception. Neuroimage 184:658–668.  https://doi.org/10.1016/j.neuroimage.2018.09.072 CrossRefPubMedGoogle Scholar
  8. 8.
    Feng S, Wang Q, Wen C, Zheng J, Kainz W, Chen J (2018) Simplified transfer function assessment of Implantable leads for MRI safety evaluations. IEEE Trans Electromagn Compa.  https://doi.org/10.1109/TEMC.2018.2867814 CrossRefGoogle Scholar
  9. 9.
    Golestanirad L, Kirsch J, Bonmassar G, Downs S, Elahi B, Martin A, Iacono M‑I, Angelone LM, Keil B, Wald LL, Pilitsis J (2019) RF-induced heating in tissue near bilateral DBS implants during MRI at 1.5T and 3T: The role of surgical lead management. Neuroimage 184:566–576.  https://doi.org/10.1016/j.neuroimage.2018.09.034 CrossRefPubMedGoogle Scholar
  10. 10.
    ISO/TS 10974:2012(E) (2012) Assessment of the safety of magnetic resonance imaging for patients with an active implantable medical deviceGoogle Scholar
  11. 11.
    Kuehn S, Kuster N, Munz O, Cabanes M (2018) In-vitro measurement system for induced voltages in medical implants in magnetic resonance imaging. IEEE International Symposium on Electromagnetic Compatibility and 2018 IEEE Asia-Pacific Symposium on Electromagnetic Compatibility (EMC/APEMC), 2018 IEEE, Suntec City, Singapore, S 80–81Google Scholar
  12. 12.
    Liu J, Zheng J, Wang Q, Kainz W, Chen J (2018) A transmission line model for the evaluation of MRI RF-induced fields on active Implantable medical devices. Ieee Trans Microw Theory Tech 66:4271–4281.  https://doi.org/10.1109/TMTT.2018.2851975 CrossRefGoogle Scholar
  13. 13.
    Liu J, Zheng J, Zeng Q, Wang Q, Rondoni J, Olsen J, Kainz W, Chen J (2018) Investigations on tissue-simulating medium for MRI RF safety assessment for patients with active Implantable medical devices. IEEE Trans Electromagn Compat.  https://doi.org/10.1109/TEMC.2018.2847909 CrossRefGoogle Scholar
  14. 14.
    Luechinger R, Zeijlemaker VA, Pedersen EM, Mortensen P, Falk E, Duru F, Candinas R, Boesiger P (2005) In vivo heating of pacemaker leads during magnetic resonance imaging. Eur Heart J 26:376–383.  https://doi.org/10.1093/eurheartj/ehi009 CrossRefPubMedGoogle Scholar
  15. 15.
    Mattei E, Censi F, Triventi M, Napolitano A, Genovese E, Cannatà V, Calcagnini G (2015) An optically coupled sensor for the measurement of currents induced by MRI gradient fields into endocardial leads. Magn Reson Mater Phys Biol Med 28:291–303.  https://doi.org/10.1007/s10334-014-0463-2 CrossRefGoogle Scholar
  16. 16.
    Missoffe A, Aissani S (2018) Experimental setup for transfer function measurement to assess RF heating of medical leads in MRI: validation in the case of a single wire: transfer function measurement setup. Magn Reson Med 79:1766–1772.  https://doi.org/10.1002/mrm.26773 CrossRefPubMedGoogle Scholar
  17. 17.
    Nordbeck P, Weiss I, Ehses P, Ritter O, Warmuth M, Fidler F, Herold V, Jakob PM, Ladd ME, Quick HH, Bauer WR (2009) Measuring RF-induced currents inside implants: Impact of device configuration on MRI safety of cardiac pacemaker leads. Magn Reson Med 61:570–578.  https://doi.org/10.1002/mrm.21881 CrossRefPubMedGoogle Scholar
  18. 18.
    Park S‑M, Kamondetdacha R, Nyenhuis JA (2007) Calculation of MRI-induced heating of an implanted medical lead wire with an electric field transfer function. J Magn Reson Imaging 26:1278–1285.  https://doi.org/10.1002/jmri.21159 CrossRefPubMedGoogle Scholar
  19. 19.
    Serano P, Angelone LM, Katnani H, Eskandar E, Bonmassar G (2015) A novel brain stimulation technology provides compatibility with MRI. Sci Rep 5.  https://doi.org/10.1038/srep09805 CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Shellock FG, Crivelli R, Venugopalan R (2008) Programmable infusion pump and catheter: evaluation using 3‑tesla magnetic resonance imaging: infusion pump and catheter evaluated at 3‑tesla. Neuromodulation. Technol Neural Interface 11:163–170.  https://doi.org/10.1111/j.1525-1403.2008.00162.x CrossRefGoogle Scholar
  21. 21.
    Tandri H, Zviman MM, Wedan SR, Lloyd T, Berger RD, Halperin H (2008) Determinants of gradient field-induced current in a pacemaker lead system in a magnetic resonance imaging environment. Heart Rhythm 5:462–468.  https://doi.org/10.1016/j.hrthm.2007.12.022 CrossRefPubMedGoogle Scholar
  22. 22.
    Tokaya JP, Raaijmakers AJE, Luijten PR, Bakker JF, van den Berg CAT (2017) MRI-based transfer function determination for the assessment of implant safety: MRI-based transfer function determination for the assessment of implant safety. Magn Reson Med 78:2449–2459.  https://doi.org/10.1002/mrm.26613 CrossRefPubMedGoogle Scholar
  23. 23.
    Turk EA, Kopanoglu E, Guney S, Bugdayci KE, Ider YZ, Erturk VB, Atalar E (2012) A simple analytical expression for the gradient induced potential on active implants during MRI. Ieee Trans Biomed Eng 59:2845–2851.  https://doi.org/10.1109/TBME.2012.2212190 CrossRefPubMedGoogle Scholar
  24. 24.
    Zanchi MG, Venook R, Pauly JM, Scott GC (2010) An optically coupled system for quantitative monitoring of MRI-induced RF currents into long conductors. Ieee Trans Med Imaging 29:169–178.  https://doi.org/10.1109/TMI.2009.2031558 CrossRefPubMedGoogle Scholar
  25. 25.
    Zeng Q, Wang Q, Zheng J, Kainz W, Chen J (2018) Evaluation of MRI RF electromagnetic field induced heating near leads of cochlear implants. Phys Med Biol 63:135020.  https://doi.org/10.1088/1361-6560/aacbf2 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Medizin Verlag GmbH, ein Teil von Springer Nature 2019

Authors and Affiliations

  • Sarra Aissani
    • 1
  • Elmar Laistler
    • 3
    • 4
  • Jacques Felblinger
    • 1
    • 2
    Email author
  1. 1.IADI, U947, INSERM, Université de LorraineCHRU de Nancy BraboisNancyFrankreich
  2. 2.CIC 1433 Innovation Technologique, INSERMCHRU Nancy BraboisNancyFrankreich
  3. 3.Zentrum für Medizinische Physik und Biomedizinische TechnikMedizinische Universität WienWienÖsterreich
  4. 4.Exzellenzzentrum Hochfeld MRMedizinische Universität WienWienÖsterreich

Personalised recommendations