Advertisement

Pharmakokinetik von gadoliniumhaltigen Kontrastmitteln

  • D. CzockEmail author
Leitthema
  • 34 Downloads

Zusammenfassung

Hintergrund

Gadoliniumhaltige Kontrastmittel werden routinemäßig bei magnetresonanztomographischen Untersuchungen angewendet. In manchen Geweben sind sie noch nach längerer Zeit nachweisbar (Haut, Gehirn, Knochen).

Fragestellung

Was ist über die Pharmakokinetik von gadoliniumhaltigen Kontrastmitteln und über die Ablagerungen in Geweben bekannt?

Material und Methode

Grundlagenarbeiten und Expertenempfehlungen werden diskutiert.

Ergebnisse

Gadoliniumhaltige Kontrastmittel verteilen sich rasch im ganzen Körper und werden renal eliminiert. Auf eine initial schnelle Elimination (Halbwertszeit etwa 2 h) folgt eine langsame Eliminationsphase (Halbwertszeit etwa 6 Tage), welche die Freisetzung aus Geweben reflektiert. Ablagerungen im Gehirn treten insbesondere nach Anwendung von linearen, nichtionischen Kontrastmitteln auf. Unklar ist, ob es sich dabei um cheliertes oder um freies Gadolinium handelt und ob ansonsten gesunde Menschen gleichermaßen betroffen sind. Risiken durch Ablagerungen im Gehirn sind bisher nicht belegt.

Schlussfolgerung

Vor Durchführung einer Magnetresonanztomographie (MRT) mit gadoliniumhaltigen Kontrastmitteln sollte eine individuelle Abwägung erfolgen (erwarteter Nutzen der Bildgebung, möglicherweise noch unerkannte Risiken, Verfügbarkeit von Alternativen und deren Risiken). Eine Messung von Gadolinium in Urin oder Blut von Patienten ist, außerhalb von Studien, nicht sinnvoll.

Schlüsselwörter

Magnetresonanztomographie Gadobensäure Gadoxetsäure Ablagerungen Risiken 

Pharmacokinetics of gadolinium-based contrast agents

Abstract

Background

Gadolinium-based contrast agents are used routinely in magnetic resonance imaging (MRI). They can be detected over a long period of time in some tissues (skin, brain, bone).

Objectives

What is known on the pharmacokinetics of gadolinium-based contrast agents and on gadolinium deposition in various tissues?

Materials and methods

Fundamental research and expert recommendations are discussed.

Results

Gadolinium-based contrast agents are distributed rapidly within the body and are eliminated by the kidneys. A fast initial elimination (half-life approximately 2 h) is followed by a slow elimination phase (half-life approximately 6 days), reflecting slow release from tissues. Deposition in the brain was observed mainly after administration of linear, non-ionic contrast agents. Whether gadolinium deposition in tissues consists of chelated or free gadolinium and whether otherwise healthy subjects are affected to a similar extent, is unclear. Currently, there are no proven risks associated with gadolinium deposition in the brain.

Conclusions

Risks and benefits should be considered on an individual basis before MRI with gadolinium-based contrast agents (expected benefit, potentially undetected risks, available alternatives and their risks). Quantification of gadolinium in urine or blood from patients is not meaningful and should not be done outside clinical studies.

Keywords

Magnetic resonance imaging Gadobenic acid Gadoxetic acid Deposition Risks 

Notes

Einhaltung ethischer Richtlinien

Interessenkonflikt

D. Czock gibt an, dass kein Interessenkonflikt besteht.

Dieser Beitrag beinhaltet keine von den Autoren durchgeführten Studien an Menschen oder Tieren.

Literatur

  1. 1.
    Alwasiyah D, Murphy C, Jannetto P, Hogg M, Beuhler MC (2018) Urinary gadolinium levels after contrast-enhanced MRI in individuals with normal renal function: a pilot study. J Med Toxicol.  https://doi.org/10.1007/s13181-018-0693-1 CrossRefPubMedGoogle Scholar
  2. 2.
    Boyken J, Frenzel T, Lohrke J, Jost G, Schütz G, Pietsch H (2019) Impact of treatment with chelating agents depends on the stability of administered GBCAs: a comparative study in rats. Invest Radiol 54:76–82CrossRefGoogle Scholar
  3. 3.
    Frenzel T, Lengsfeld P, Schirmer H, Hütter J, Weinmann HJ (2008) Stability of gadolinium-based magnetic resonance imaging contrast agents in human serum at 37 degrees C. Invest Radiol 43:817–828CrossRefGoogle Scholar
  4. 4.
    Kanda T, Ishii K, Kawaguchi H, Kitajima K, Takenaka D (2014) High signal intensity in the dentate nucleus and globus pallidus on unenhanced T1-weighted MR images: relationship with increasing cumulative dose of a gadolinium-based contrast material. Radiology 270:834–841CrossRefGoogle Scholar
  5. 5.
    Kang H, Hii M, Le M, Tam R, Riddehough A, Traboulsee A, Kolind S, Freedman MS, Li DKB (2018) Gadolinium deposition in deep brain structures: relationship with dose and ionization of linear gadolinium-based contrast agents. Ajnr Am J Neuroradiol 39:1597–1603CrossRefGoogle Scholar
  6. 6.
    Lancelot E (2016) Revisiting the pharmacokinetic profiles of gadolinium-based contrast agents: differences in long-term biodistribution and excretion. Invest Radiol 51:691–700CrossRefGoogle Scholar
  7. 7.
    Layne KA, Dargan PI, Archer JRH, Wood DM (2018) Gadolinium deposition and the potential for toxicological sequelae – a literature review of issues surrounding gadolinium-based contrast agents. Br J Clin Pharmacol 84:2522–2534CrossRefGoogle Scholar
  8. 8.
    McDonald RJ, McDonald JS, Kallmes DF, Jentoft ME, Paolini MA, Murray DL, Williamson EE, Eckel LJ (2017) Gadolinium deposition in human brain tissues after contrast-enhanced MR Imaging in adult patients without intracranial abnormalities. Radiology 285:546–554CrossRefGoogle Scholar
  9. 9.
    Perazella MA (2009) Current status of gadolinium toxicity in patients with kidney disease. Clin J Am Soc Nephrol 4:461–469CrossRefGoogle Scholar
  10. 10.
    Runge VM (2018) Dechelation (transmetalation): consequences and safety concerns with the linear gadolinium-based contrast agents, in view of recent health care rulings by the EMA (Europe), FDA (United States), and PMDA (Japan). Invest Radiol 53:571–578PubMedGoogle Scholar
  11. 11.
    Semelka RC, Ramalho M, Jay M, Hickey L, Hickey J (2018) Intravenous calcium-/zinc-diethylene triamine penta-acetic acid in patients with presumed gadolinium deposition disease: a preliminary report on 25 patients. Invest Radiol 53:373–379CrossRefGoogle Scholar

Copyright information

© Springer Medizin Verlag GmbH, ein Teil von Springer Nature 2019

Authors and Affiliations

  1. 1.Medizinische Klinik, Abteilung Klinische Pharmakologie und PharmakoepidemiologieUniversitätsklinikum HeidelbergHeidelbergDeutschland

Personalised recommendations