Advertisement

Der Radiologe

, Volume 59, Issue 9, pp 812–819 | Cite as

Stellenwert der FDG-PET/Computertomographie beim kolorektalen Karzinom

  • S. KleinerEmail author
  • W. Weber
Leitthema
  • 58 Downloads

Zusammenfassung

Hintergrund

Die Hybridbildgebung FDG-PET/CT (18F‑Fluordesoxyglukose-Positronen-Emissions-Tomographie/Computertomographie) hat in den letzten Jahren einen zunehmenden Stellenwert in der Onkologie erlangt und wird auch beim kolorektalen Karzinom eingesetzt.

Diagnosestellung

Einer fokal erhöhten FDG-Aufnahme im Gastrointestinaltrakt kann ein kolorektales Karzinom zugrunde liegen. Ein solcher Befund bedarf daher einer weiterführenden Abklärung.

Primäres Staging

Das Staging des Primärtumors und der lokregionären Lymphknoten ist weiterhin Domäne der etablierten Bildgebungsmethoden, da die FDG-PET/CT hierbei keinen eindeutigen zusätzlichen Nutzen erbringt. Lebermetastasen können mittels FDG-PET/CT mit hoher Sensitivität detektiert werden, allerdings ist die MRT bei kleinen Läsionen überlegen.

Bestrahlungsplanung

Die FDG-PET/CT spielt für die Bestrahlungsplanung beim Rektumkarzinom bisher eine untergeordnete Rolle. Zur Optimierung des Bestrahlungsfelds kann sie jedoch potenziell beitragen.

Therapiekontrolle

Die FDG-PET/CT eignet sich zum Therapiemonitoring, da neben den rein morphologischen zusätzlich auch metabolische Veränderungen des Tumors frühzeitig erfasst werden können. Dies ermöglicht beispielsweise, nach Beginn einer neoadjuvanten Radiochemotherapie eines Rektumkarzinoms Nonresponder frühzeitig zu erkennen. Die FDG-PET/CT kann auch zur Therapiekontrolle von Lebermetastasen, insbesondere nach lokaltherapeutischen Verfahren, sinnvoll eingesetzt werden.

Rezidivdiagnostik

Bei klinischem Verdacht auf ein Lokalrezidiv und erhöhten Tumormarkern besitzt die FDG-PET/CT einen hohen Stellenwert, da Tumorrezidive mit hoher Sensitivität und Spezifität erkannt werden können.

Schlüsselwörter

Kolorektale Tumoren Staging Multimodales Imaging  Therapiekontrolle Rezidiv 

Importance of FDG-PET/computed tomography in colorectal cancer

Abstract

Background

Hybrid imaging FDG PET/CT (18F‑fluordeoxyglucose positron emission tomography/computed tomography) has gained increasing importance in oncology in recent years.

Diagnosis

A focal increase in FDG uptake in the gastrointestinal tract may be due to colorectal carcinoma. Such a finding requires further clarification.

Primary staging

Staging of the primary and locoregional lymph nodes remains a domain of established imaging modalities as FDG PET/CT does not provide a clear additional benefit. Liver metastases can be detected with high sensitivity by FDG PET/CT, but MRI is superior in small lesions.

Radiation therapy planning

So far FDG PET/CT plays a subordinate role in the radiation therapy planning of rectal cancer. However, it can potentially contribute to the optimization of planning target volumes.

Therapy monitoring

FDG PET/CT is suitable for monitoring therapy because morphological and metabolic changes of the tumor can be detected in early stages. This enables early detection of nonresponders after beginning neoadjuvant chemoradiation therapy of rectal cancer. FDG PET/CT can also be used for therapy control of liver metastases, especially after local therapeutic procedures.

Detection of recurrence

With clinical suspicion of local recurrence and increased tumor markers, FDG PET/CT is a valuable tool as tumor recurrence can be detected with high sensitivity and specificity.

Keywords

Colorectal neoplasms Staging Multimodal Imaging Therapy monitoring Recurrence 

Notes

Einhaltung ethischer Richtlinien

Interessenkonflikt

S. Kleiner und W. Weber geben an, dass kein Interessenkonflikt besteht.

Für diesen Beitrag wurden von den Autoren keine Studien an Menschen oder Tieren durchgeführt. Für die aufgeführten Studien gelten die jeweils dort angegebenen ethischen Richtlinien.

Literatur

  1. 1.
    Annunziata S, Treglia G, Caldarella C, Galiandro F (2014) The role of 18F-FDG-PET and PET/CT in patients with colorectal liver metastases undergoing selective internal radiation therapy with yttrium-90: a first evidence-based review. ScientificWorldJournal.  https://doi.org/10.1155/2014/879469 Google Scholar
  2. 2.
    Avallone A, Aloj L, Caracò C, Delrio P, Pecori B, Tatangelo F, Scott N, Casaretti R, Di Gennaro F, Montano M, Silvestro L, Budillon A, Lastoria S (2012) Early FDG PET response assessment of preoperative radiochemotherapy in locally advanced rectal cancer: correlation with long-term outcome. Eur J Nucl Med Mol Imaging 39(12):1848–1857.  https://doi.org/10.1007/s00259-012-2229-2 CrossRefGoogle Scholar
  3. 3.
    Bipat S, van Leeuwen MS, Comans EFI, Pijl MEJ, Bossuyt PMM, Zwinderman AH, Stoker J (2005) Colorectal liver metastases: CT, MR imaging, and PET for diagnosis—meta-analysis. Radiology 237(1):123–131.  https://doi.org/10.1148/radiol.2371042060 CrossRefGoogle Scholar
  4. 4.
    Brush J, Boyd K, Chappell F, Crawford F, Dozier M, Fenwick E, Glanville J, McIntosh H, Renehan A, Weller D, Dunlop M (2011) The value of FDG positron emission tomography/computerised tomography (PET/CT) in pre-operative staging of colorectal cancer: a systematic review and economic evaluation. Health Technol Assess 15(35):1–192–iii–iv.  https://doi.org/10.3310/hta15350 CrossRefGoogle Scholar
  5. 5.
    Buijsen J, van den Bogaard J, van der Weide H, Engelsman S, van Stiphout R, Janssen M, Beets G, Beets-Tan R, Lambin P, Lammering G (2012) FDG-PET-CT reduces the interobserver variability in rectal tumor delineation. Radiother Oncol 102(3):371–376.  https://doi.org/10.1016/j.radonc.2011.12.016 CrossRefGoogle Scholar
  6. 6.
    Even-Sapir E, Lerman H, Gutman M, Lievshitz G, Zuriel L, Polliack A, Inbar M, Metser U (2006) The presentation of malignant tumours and pre-malignant lesions incidentally found on PET-CT. Eur J Nucl Med Mol Imaging 33(5):541–552.  https://doi.org/10.1007/s00259-005-0056-4 CrossRefGoogle Scholar
  7. 7.
    Fletcher JW, Djulbegovic B, Soares HP, Siegel BA, Lowe VJ, Lyman GH, Coleman RE, Wahl R, Paschold JC, Avril N, Einhorn LH, Suh WW, Samson D, Delbeke D, Gorman M, Shields AF (2008) Recommendations on the use of 18F-FDG PET in oncology. J Nucl Med 49(3):480–508.  https://doi.org/10.2967/jnumed.107.047787 CrossRefGoogle Scholar
  8. 8.
    Frankel TL, Do RKG, Jarnagin WR (2012) Preoperative imaging for hepatic resection of colorectal cancer metastasis. J Gastrointest Oncol 3(1):11–18.  https://doi.org/10.3978/j.issn.2078-6891.2012.002 Google Scholar
  9. 9.
    Friedland S, Soetikno R, Carlisle M, Taur A, Kaltenbach T, Segall G (2005) 18-Fluorodeoxyglucose positron emission tomography has limited sensitivity for colonic adenoma and early stage colon cancer. Gastrointest Endosc 61(3):395–400CrossRefGoogle Scholar
  10. 10.
    Gauthé M, Richard-Molard M, Cacheux W, Michel P, Jouve J-L, Mitry E, Alberini J-L, Lièvre A (2015) Role of fluorine 18 fluorodeoxyglucose positron emission tomography/computed tomography in gastrointestinal cancers. Dig Liver Dis 47(6):443–454.  https://doi.org/10.1016/j.dld.2015.02.005 CrossRefGoogle Scholar
  11. 11.
    Gontier E, Fourme E, Wartski M, Blondet C, Bonardel G, Le Stanc E, Mantzarides M, Foehrenbach H, Pecking A‑P, Alberini J‑L (2008) High and typical 18F-FDG bowel uptake in patients treated with metformin. Eur J Nucl Med Mol Imaging 35(1):95–99.  https://doi.org/10.1007/s00259-007-0563-6 CrossRefGoogle Scholar
  12. 12.
    Herrmann K, Bundschuh RA, Rosenberg R, Schmidt S, Praus C, Souvatzoglou M, Becker K, Schuster T, Essler M, Wieder HA, Friess H, Ziegler SI, Schwaiger M, Krause BJ (2011) Comparison of different SUV-based methods for response prediction to neoadjuvant radiochemotherapy in locally advanced rectal cancer by FDG-PET and MRI. Mol Imaging Biol 13(5):1011–1019.  https://doi.org/10.1007/s11307-010-0383-0 CrossRefGoogle Scholar
  13. 13.
    Israel O, Yefremov N, Bar-Shalom R, Kagana O, Frenkel A, Keidar Z, Fischer D (2005) PET/CT detection of unexpected gastrointestinal foci of 18F-FDG uptake: incidence, localization patterns, and clinical significance. J Nucl Med 46(5):758–762Google Scholar
  14. 14.
    Kamel EM, Thumshirn M, Truninger K, Schiesser M, Fried M, Padberg B, Schneiter D, Stoeckli SJ, von Schulthess GK, Stumpe KDM (2004) Significance of incidental 18F-FDG accumulations in the gastrointestinal tract in PET/CT: correlation with endoscopic and histopathologic results. J Nucl Med 45(11):1804–1810Google Scholar
  15. 15.
    Kawada K, Iwamoto M, Sakai Y (2016) Mechanisms underlying 18F-fluorodeoxyglucose accumulation in colorectal cancer. World J Radiol 8(11):880–886.  https://doi.org/10.4329/wjr.v8.i11.880 CrossRefGoogle Scholar
  16. 16.
    Kinkel K, Lu Y, Both M, Warren RS, Thoeni RF (2002) Detection of hepatic metastases from cancers of the gastrointestinal tract by using noninvasive imaging methods (US, CT, MR imaging, PET): a meta-analysis. Radiology 224(3):748–756.  https://doi.org/10.1148/radiol.2243011362 CrossRefGoogle Scholar
  17. 17.
    Kitajima K, Nakajo M, Kaida H, Minamimoto R, Hirata K, Tsurusaki M, Doi H, Ueno Y, Sofue K, Tamaki Y, Yamakado K (2017) Present and future roles of FDG-PET/CT imaging in the management of gastrointestinal cancer: an update. Nagoya J Med Sci 79(4):527–543.  https://doi.org/10.18999/nagjms.79.4.527 Google Scholar
  18. 18.
    Kong G, Jackson C, Koh DM, Lewington V, Sharma B, Brown G, Cunningham D, Cook GJR (2008) The use of 18F-FDG PET/CT in colorectal liver metastases—comparison with CT and liver MRI. Eur J Nucl Med Mol Imaging 35(7):1323–1329.  https://doi.org/10.1007/s00259-008-0743-z CrossRefGoogle Scholar
  19. 19.
    Leitlinienprogramm Onkologie (Deutsche Krebsgesellschaft, Deutsche Krebshilfe, AWMF) (2019) S3-Leitlinie Kolorektales Karzinom Langversion 2.1, AWMF Registrierungsnummer: 021/007OL. http://www.leitlinienprogramm-onkologie.de/leitlinien/kolorektales-karzinom/. Zugegriffen: 6. März 2019Google Scholar
  20. 20.
    Lodge MA, Chaudhry MA, Wahl RL (2012) Noise considerations for PET quantification using maximum and peak standardized uptake value. J Nucl Med 53(7):1041–1047.  https://doi.org/10.2967/jnumed.111.101733 CrossRefGoogle Scholar
  21. 21.
    Lu Y‑Y, Chen J‑H, Ding H‑J, Chien C‑R, Lin W‑Y, Kao C‑H (2012) A systematic review and meta-analysis of pretherapeutic lymph node staging of colorectal cancer by 18F-FDG PET or PET/CT. Nucl Med Commun 33(11):1127–1133.  https://doi.org/10.1097/MNM.0b013e328357b2d9 CrossRefGoogle Scholar
  22. 22.
    Lu Y‑Y, Chen J‑H, Chien C‑R, Chen WT‑L, Tsai S‑C, Lin W‑Y, Kao C‑H (2013) Use of FDG-PET or PET/CT to detect recurrent colorectal cancer in patients with elevated CEA: a systematic review and meta-analysis. Int J Colorectal Dis 28(8):1039–1047.  https://doi.org/10.1007/s00384-013-1659-z CrossRefGoogle Scholar
  23. 23.
    Maas M, Nelemans PJ, Valentini V, Das P, Rödel C, Kuo L‑J, Calvo FA, García-Aguilar J, Glynne-Jones R, Haustermans K, Mohiuddin M, Pucciarelli S, Small W, Suárez J, Theodoropoulos G, Biondo S, Beets-Tan RGH, Beets GL (2010) Long-term outcome in patients with a pathological complete response after chemoradiation for rectal cancer: a pooled analysis of individual patient data. Lancet Oncol 11(9):835–844.  https://doi.org/10.1016/S1470-2045(10)70172-8 CrossRefGoogle Scholar
  24. 24.
    Maas M, Rutten IJG, Nelemans PJ, Lambregts DMJ, Cappendijk VC, Beets GL, Beets-Tan RGH (2011) What is the most accurate whole-body imaging modality for assessment of local and distant recurrent disease in colorectal cancer? A meta-analysis: Imaging for recurrent colorectal cancer. Eur J Nucl Med Mol Imaging 38(8):1560–1571.  https://doi.org/10.1007/s00259-011-1785-1 CrossRefGoogle Scholar
  25. 25.
    Maffione AM, Marzola MC, Capirci C, Colletti PM, Rubello D (2015) Value of (18)F-FDG PET for predicting response to neoadjuvant therapy in rectal cancer: systematic review and meta-analysis. AJR Am J Roentgenol 204(6):1261–1268.  https://doi.org/10.2214/AJR.14.13210 CrossRefGoogle Scholar
  26. 26.
    Moulton C‑A, Gu C‑S, Law CH, Tandan VR, Hart R, Quan D, Fairfull Smith RJ, Jalink DW, Husien M, Serrano PE, Hendler AL, Haider MA, Ruo L, Gulenchyn KY, Finch T, Julian JA, Levine MN, Gallinger S (2014) Effect of PET before liver resection on surgical management for colorectal adenocarcinoma metastases: a randomized clinical trial. J Am Med Assoc 311(18):1863–1869.  https://doi.org/10.1001/jama.2014.3740 CrossRefGoogle Scholar
  27. 27.
    O JH, Lodge MA, Wahl RL (2016) Practical PERCIST: a simplified guide to PET response criteria in solid tumors 1.0. Radiology 280(2):576–584.  https://doi.org/10.1148/radiol.2016142043 CrossRefGoogle Scholar
  28. 28.
    Ruers TJM, Wiering B, van der Sijp JRM, Roumen RM, de Jong KP, Comans EFI, Pruim J, Dekker HM, Krabbe PFM, Oyen WJG (2009) Improved selection of patients for hepatic surgery of colorectal liver metastases with (18)F-FDG PET: a randomized study. J Nucl Med 50(7):1036–1041.  https://doi.org/10.2967/jnumed.109.063040 CrossRefGoogle Scholar
  29. 29.
    Saini S (2001) Radiologic measurement of tumor size in clinical trials: past, present, and future. AJR Am J Roentgenol 176(2):333–334.  https://doi.org/10.2214/ajr.176.2.1760333 CrossRefGoogle Scholar
  30. 30.
    Samim M, Molenaar IQ, Seesing MFJ, van Rossum PSN, van den Bosch MAAJ, Ruers TJM, Borel Rinkes IHM, van Hillegersberg R, Lam MGEH, Verkooijen HM (2017) The diagnostic performance of 18F-FDG PET/CT, CT and MRI in the treatment evaluation of ablation therapy for colorectal liver metastases: a systematic review and meta-analysis. Surg Oncol 26(1):37–45.  https://doi.org/10.1016/j.suronc.2016.12.006 CrossRefGoogle Scholar
  31. 31.
    Seo HJ, Kim M‑J, Lee JD, Chung W‑S, Kim Y‑E (2011) Gadoxetate disodium-enhanced magnetic resonance imaging versus contrast-enhanced 18F-fluorodeoxyglucose positron emission tomography/computed tomography for the detection of colorectal liver metastases. Invest Radiol 46(9):548–555.  https://doi.org/10.1097/RLI.0b013e31821a2163 CrossRefGoogle Scholar
  32. 32.
    Sobhani I, Tiret E, Lebtahi R, Aparicio T, Itti E, Montravers F, Vaylet C, Rougier P, André T, Gornet JM, Cherqui D, Delbaldo C, Panis Y, Talbot JN, Meignan M, Le Guludec D (2008) Early detection of recurrence by 18FDG-PET in the follow-up of patients with colorectal cancer. Br J Cancer 98(5):875–880.  https://doi.org/10.1038/sj.bjc.6604263 CrossRefGoogle Scholar
  33. 33.
    Tsurusaki M, Sofue K, Murakami T (2016) Current evidence for the diagnostic value of gadoxetic acid-enhanced magnetic resonance imaging for liver metastasis. Hepatol Res 46(9):853–861.  https://doi.org/10.1111/hepr.12646 CrossRefGoogle Scholar
  34. 34.
    Xia Q, Liu J, Wu C, Song S, Tong L, Huang G, Feng Y, Jiang Y, Liu Y, Yin T, Ni Y (2015) Prognostic significance of (18)FDG PET/CT in colorectal cancer patients with liver metastases: a meta-analysis. Cancer Imaging 15:19.  https://doi.org/10.1186/s40644-015-0055-z CrossRefGoogle Scholar
  35. 35.
    Zaniboni A, Savelli G, Pizzocaro C, Basile P, Massetti V (2015) Positron emission tomography for the response evaluation following treatment with chemotherapy in patients affected by colorectal liver metastases: a selected review. Gastroenterol Res Pract.  https://doi.org/10.1155/2015/706808 Google Scholar

Copyright information

© Springer Medizin Verlag GmbH, ein Teil von Springer Nature 2019

Authors and Affiliations

  1. 1.Nuklearmedizinische Klinik und Poliklinik, Klinikum rechts der IsarTechnische Universität MünchenMünchenDeutschland

Personalised recommendations