Advertisement

Der Radiologe

, Volume 58, Issue 10, pp 914–924 | Cite as

Nierenfunktionsdiagnostik mittels Magnetresonanztomographie

  • Hanne Kirsch
  • Hans‑Joachim Mentzel
Leitthema

Zusammenfassung

Infolge der Entwicklung neuer Sequenzen und Techniken stehen zunehmend Möglichkeiten zur funktionellen Nierendiagnostik mittels MRT (Magnetresonanztomographie) wie fMRU (funktionelle MR-Urographie), ASL („arterial spin labeling“), DWI („diffusion weighted imaging“), DTI („diffusion tension imaging“) und BOLD („blood oxygen level dependent“) zur Verfügung. Studien belegen, dass diese Techniken valide funktionelle Daten hinsichtlich Perfusion, Oxygenierung und Diffusion sowie zu glomerulärer Filtration und zum Ausmaß einer obstruktiven Uropathie liefern. Pathophysiologische renale Prozesse z. B. an Transplantatnieren, bei chronischen Nierenerkrankungen, aber auch in der Tumordiagnostik können somit vollumfänglich beurteilt werden. Die fMRU, die neben der zuverlässigen Beurteilung der Nierenfunktion gleichzeitig eine hochauflösende morphologische Darstellung der Nieren und des Harntraktes bietet, hat – zumindest in spezialisierten kinderradiologischen Zentren – bereits Einzug in die klinischen Routine genommen. Weiterentwicklungen der Sequenzen und prospektive klinische Studien sind zur Etablierung der Methoden, Erstellung von Standardprotokollen und einheitlichen, vereinfachten Nachverarbeitung erforderlich, um die Verfahren in der klinischen Routine zu etablieren.

Schlüsselwörter

Funktionelle MR-Urographie (fMRU) Arterial spin labeling (ASL) BOLD-MRT Diffusionsgewichtete Bildgebung (DWI) Diffusions-Tensor-Bildgebung (DTI) 

Renal functional diagnostics using magnetic resonance imaging

Abstract

Due to progress in the development of sequences and techniques magnetic resonance imaging (MRI) methods, such as functional MR urography (fMRU), arterial spin labeling (ASL), diffusion-weighted imaging (DWI), diffusion tension imaging (DTI) and blood oxygen level dependent MRI (BOLD-MRI) have become available for renal functional evaluation. In recent years research of these imaging techniques has demonstrated that they provide valid functional data with respect to renal perfusion, oxygenation and interstitial diffusion as well as glomerular filtration and the extent of an obstructive uropathy. Many pathophysiological renal processes, e. g. in transplanted kidneys, in the setting of chronic kidney disease and in the diagnostics of renal tumors, can therefore be fully evaluated. The fMRU, which enables a reliable assessment of renal function combined with high-resolution morphological evaluation of the kidneys and the entire urinary tract, has already become an inherent component in the clinical setting, at least in specialized pediatric radiology centers. To establish the new imaging methods in the clinical routine, further technical improvements and large-scale prospective clinical studies are necessary to validate the determined functional parameters, to generate standard protocols and to unify and facilitate data post-processing.

Keywords

Functional MR urography (fMRU) Arterial spin labeling (ASL) BOLD-MRI Diffusion-weighted imaging (DWI) Diffusion tensor imaging (DTI) 

Notes

Einhaltung ethischer Richtlinien

Interessenkonflikt

H. Kirsch und H.-J. Mentzel geben an, dass kein Interessenkonflikt besteht.

Dieser Beitrag beinhaltet keine von den Autoren durchgeführten Studien an Menschen oder Tieren.

Literatur

  1. 1.
    Barnes SR, Ng TS, Santa-Maria N et al (2015) ROCKETSHIP: a flexible and modular software tool for the planning, processing and analysis of dynamic MRI studies. BMC Med Imaging 15:19CrossRefGoogle Scholar
  2. 2.
    Bokacheva L, Rusinek H, Zhang JL et al (2009) Estimates of glomerular filtration rate from MR renography and tracer kinetic models. J Magn Reson Imaging 29:371–382CrossRefGoogle Scholar
  3. 3.
    Boss A, Schaefer JF, Martirosian P et al (2007) Dynamic magnetic resonance nephrography and urography of uropathies in children. Rofo 179:832–840CrossRefGoogle Scholar
  4. 4.
    Chen F, Li S, Sun D (2018) Methods of blood oxygen level-dependent magnetic resonance imaging analysis for evaluating renal oxygenation. Kidney Blood Press Res 43:378–388CrossRefGoogle Scholar
  5. 5.
    Darge K, Khrichenke D (2011) MR-Urographie (MRU): Umfassende morphologische und funktionelle Beurteilung des kindlichen Harntraktes. Kind&Radiologie 27:25–30Google Scholar
  6. 6.
    Deger E, Celik A, Dheir H et al (2018) Rejection evaluation after renal transplantation using MR diffusion tensor imaging. Acta Radiol.  https://doi.org/10.1177/0284185117733777 CrossRefPubMedGoogle Scholar
  7. 7.
    Delgado J, Bedoya MA, Adeb M et al (2015) Optimizing functional MR urography: prime time for a 30-minutes-or-less fMRU. Pediatr Radiol 45:1333–1343CrossRefGoogle Scholar
  8. 8.
    Dillman JR, Trout AT, Smith EA (2016) MR urography in children and adolescents: techniques and clinical applications. Abdom Radiol 41:1007–1019CrossRefGoogle Scholar
  9. 9.
    Dong J, Yang L, Su T et al (2013) Quantitative assessment of acute kidney injury by noninvasive arterial spin labeling perfusion MRI: a pilot study. Sci China Life Sci 56:745–750CrossRefGoogle Scholar
  10. 10.
    Ebrahimi B, Textor SC, Lerman LO (2014) Renal relevant radiology: renal functional magnetic resonance imaging. Clin J Am Soc Nephrol 9:395–405CrossRefGoogle Scholar
  11. 11.
    Eikefjord E, Andersen E, Hodneland E et al (2015) Use of 3D DCE-MRI for the estimation of renal perfusion and glomerular filtration rate: an intrasubject comparison of FLASH and KWIC with a comprehensive framework for evaluation. AJR Am J Roentgenol 204:W273–W281CrossRefGoogle Scholar
  12. 12.
    Feng Q, Fang W, Sun XP et al (2017) Renal clear cell carcinoma: diffusion tensor imaging diagnostic accuracy and correlations with clinical and histopathological factors. Clin Radiol 72:560–564CrossRefGoogle Scholar
  13. 13.
    Grattan-Smith JD, Little SB, Jones RA (2008) MR urography evaluation of obstructive uropathy. Pediatr Radiol 38(Suppl 1):S49–S69CrossRefGoogle Scholar
  14. 14.
    Hall ME, Jordan JH, Juncos LA et al (2018) BOLD magnetic resonance imaging in nephrology. Int J Nephrol Renovasc Dis 11:103–112CrossRefGoogle Scholar
  15. 15.
    Khrichenko D, Darge K (2010) Functional analysis in MR urography – made simple. Pediatr Radiol 40:182–199CrossRefGoogle Scholar
  16. 16.
    Khrichenko D, Saul D, Adeb M et al (2016) Intra- and inter-observer variability of functional MR urography (fMRU) assessment in children. Pediatr Radiol 46:666–673CrossRefGoogle Scholar
  17. 17.
    Lanzman RS, Notohamiprodjo M, Wittsack HJ (2015) Functional magnetic resonance imaging of the kidneys. Radiologe 55:1077–1087CrossRefGoogle Scholar
  18. 18.
    Li Y, Lee MM, Worters PW et al (2017) Pilot study of renal diffusion tensor imaging as a correlate to histopathology in pediatric renal allografts. AJR Am J Roentgenol 208:1358–1364CrossRefGoogle Scholar
  19. 19.
    Lim SW, Chrysochou C, Buckley DL et al (2013) Prediction and assessment of responses to renal artery revascularization with dynamic contrast-enhanced magnetic resonance imaging: a pilot study. Am J Physiol Renal Physiol 305:F672–F678CrossRefGoogle Scholar
  20. 20.
    Morani AC, Elsayes KM, Liu PS et al (2013) Abdominal applications of diffusion-weighted magnetic resonance imaging: where do we stand. World J Radiol 5:68–80CrossRefGoogle Scholar
  21. 21.
    Nery F, Gordon I, Thomas DL (2018) Non-invasive renal perfusion imaging using arterial spin labeling MRI: challenges and opportunities. Diagnostics (Basel).  https://doi.org/10.3390/diagnostics8010002 CrossRefGoogle Scholar
  22. 22.
    Pruijm M, Milani B, Pivin E et al (2018) Reduced cortical oxygenation predicts a progressive decline of renal function in patients with chronic kidney disease. Kidney Int 93:932–940CrossRefGoogle Scholar
  23. 23.
    Ries M, Jones RA, Basseau F et al (2001) Diffusion tensor MRI of the human kidney. J Magn Reson Imaging 14:42–49CrossRefGoogle Scholar
  24. 24.
    Rodigas J, Kirsch H, John U et al (2018) Static and functional MR urography to assess congenital anomalies of the kidney and urinary tract in infants and children: comparison with MAG3 renal Scintigraphy and Sonography. AJR Am J Roentgenol 211(1):193–203CrossRefGoogle Scholar
  25. 25.
    Schor-Bardach R, Alsop DC, Pedrosa I et al (2009) Does arterial spin-labeling MR imaging-measured tumor perfusion correlate with renal cell cancer response to antiangiogenic therapy in a mouse model? Radiology 251:731–742CrossRefGoogle Scholar
  26. 26.
    Sehic A, Julardzija F, Vegar-Zubovic S et al (2017) Advantages of T2 weighted three dimensional and T1 weighted three dimensional contrast medium enhanced magnetic resonance urography in examination of the child population. Acta Inform Med 25:24–27CrossRefGoogle Scholar
  27. 27.
    Seif M, Eisenberger U, Binser T et al (2016) Renal blood oxygenation level-dependent imaging in longitudinal follow-up of donated and remaining kidneys. Radiology 279:795–804CrossRefGoogle Scholar
  28. 28.
    Stenzel M, Darge K, John U et al (2013) Funktionelle MR-Urografie (fMRU) bei Kindern und Jugendlichen – Indikationen, Techniken und Anforderungen. Radiol Up2date 13:75–94CrossRefGoogle Scholar
  29. 29.
    Van Der Molen AJ, Reimer P, Dekkers IA et al (2018) Post-contrast acute kidney injury – Part 1: Definition, clinical features, incidence, role of contrast medium and risk factors : Recommendations for updated ESUR Contrast Medium Safety Committee guidelines. Eur Radiol 28(7):2845.  https://doi.org/10.1007/s00330-017-5246-5 CrossRefGoogle Scholar
  30. 30.
    Van Eijs MJM, Van Zuilen AD, De Boer A et al (2017) Innovative perspective: gadolinium-free magnetic resonance imaging in long-term follow-up after kidney transplantation. Front Physiol 8:296CrossRefGoogle Scholar
  31. 31.
    Vivier PH, Dolores M, Taylor M et al (2010) MR urography in children. Part 2: how to use ImageJ MR urography processing software. Pediatr Radiol 40:739–746CrossRefGoogle Scholar
  32. 32.
    Wang Q, Guo C, Zhang L et al (2018) BOLD MRI to evaluate early development of renal injury in a rat model of diabetes. J Int Med Res 46:1391–1403CrossRefGoogle Scholar
  33. 33.
    Wentland AL, Sadowski EA, Djamali A et al (2009) Quantitative MR measures of intrarenal perfusion in the assessment of transplanted kidneys: initial experience. Acad Radiol 16:1077–1085CrossRefGoogle Scholar
  34. 34.
    Yamamoto A, Zhang JL, Rusinek H et al (2011) Quantitative evaluation of acute renal transplant dysfunction with low-dose three-dimensional MR renography. Radiology 260:781–789CrossRefGoogle Scholar
  35. 35.
    Zhang JL, Rusinek H, Chandarana H et al (2013) Functional MRI of the kidneys. J Magn Reson Imaging 37:282–293CrossRefGoogle Scholar

Copyright information

© Springer Medizin Verlag GmbH, ein Teil von Springer Nature 2018

Authors and Affiliations

  1. 1.Sektion Kinderradiologie, Institut für Diagnostische und Interventionelle RadiologieUniversitätsklinikum JenaJenaDeutschland

Personalised recommendations