Advertisement

Der Radiologe

, Volume 58, Issue 8, pp 754–761 | Cite as

Nebenwirkungen nach Strahlentherapie in der Bildgebung

  • T. Welzel
  • J. M. Tanner
Leitthema

Zusammenfassung

Hintergrund

In Abhängigkeit von der Bestrahlungslokalisation und dem Zielvolumen kommt es zu einer zwangsläufigen Mitbestrahlung des peritumoralen Normalgewebes. Abhängig vom zeitlichen Verlauf nach der Bestrahlung werden akute, subakute und chronische Reaktionen im mitbestrahlten Normalgewebe beschrieben, die sich in der Bildgebung widerspiegeln. Dabei können radiogene Gewebsschäden temporär oder dauerhaft auftreten.

Zielstellung

Der Artikel gibt einen Überblick über die wichtigsten radiologischen Zeichen radiogener Normalgewebsveränderungen in den verschiedenen Organsystemen.

Befunde

Häufige radiogene Pathologien in der Bildgebung sind Pneumonitis, Blut-Hirn-Schrankenstörung, Radionekrose im Hirnparenchym, radiogene Lebererkrankung, Mukositis, Kolitis, Osteitis, Osteoradionekrose und Myositis. Eine Kombination mit einer Chemotherapie oder Immuntherapie kann die radiogene Normalgewebsreaktion noch deutlich verstärken.

Empfehlung für die radiologische Nachsorge

Die wichtigste Differenzialdiagnose zur radiogenen Normalgewebsreaktion stellt das posttherapeutische Tumorrezidiv dar. Je nach Tumorbiologie und Bestrahlungstechnik treten die Tumorrezidive nach einer Radiotherapie im unterschiedlichen zeitlichen Intervall auf. Dies sollte entsprechend den Tumorleitlinien durch ein engmaschiges Nachsorgeintervall abgedeckt werden. Für den sicheren Ausschluss eines Tumorrezidivs ist es erforderlich, neben der Bildgebung auch das klinische Erscheinungsbild des Patienten miteinzubeziehen. Hierbei sollte der Radiologe typische Erscheinungsbilder radiogener Normalgewebsreaktionen in der Bildgebung erkennen, um Fehlinterpretationen bei Follow-up-Untersuchungen zu vermeiden.

Schlüsselwörter

Radiotherapie  Radiogene Nebenwirkungen Normalgewebe Computertomographie  Magnetresonanztomographie  

Imaging of side effects after radiation therapy

Abstract

Background

Peritumoral normal tissue is inevitably also irradiated during radiotherapy, depending on the location and size of the target volume as well as the cumulative dose. Depending on the temporal course after irradiation acute, subacute, and chronic alterations are described in co-irradiated normal tissue that can be detected by imaging. Radiation damage can be transient or persistent.

Objective

This article gives an overview of the most important signs of radiation-induced radiogenic alterations to tissue in various organ systems.

Findings

Frequent radiation-induced tissue alterations found by imaging are pneumonitis, disturbance of the blood-brain barrier, radionecrosis of brain tissue, radiogenic liver damage, mucositis, colitis, osteitis, osteoradionecrosis and myositis. The combination with systemic chemotherapy or immunotherapy can increase the severity of radiogenic reactions of normal tissue.

Recommendations for aftercare

The most important differential diagnosis for radiogenic alterations to normal tissue is post-therapeutic tumor recurrence. Besides typical latency periods, location and matching with the radiation field are important differentiation criteria, depending on the tumor biology and the radiation technique. The follow-up schedule should follow the current guidelines and the clinical condition of the patient should be additionally considered. The radiologist needs to be familiar with the typical imaging morphology of radiogenic tissue changes to avoid false interpretation during follow-up investigations.

Keywords

Radiotherapy  Radiation induced side effects Bystander tissue Computed tomography  Magnetic resonance imaging  

Notes

Einhaltung ethischer Richtlinien

Interessenkonflikt

T. Welzel und J.M. Tanner geben an, dass kein Interessenkonflikt besteht.

Dieser Beitrag beinhaltet keine von den Autoren durchgeführten Studien an Menschen oder Tieren.

Literatur

  1. 1.
    Addley HC, Vargas HA, Moyle PL et al (2010) Pelvic imaging following chemotherapy and radiation therapy for gynecologic malignancies. Radiographics 30:1843–1856CrossRefPubMedGoogle Scholar
  2. 2.
    Coia LR, Myerson RJ, Tepper JE (1995) Late effects of radiation therapy on the gastrointestinal tract. Int J Radiat Oncol Biol Phys 31:1213–1236CrossRefPubMedGoogle Scholar
  3. 3.
    Dawson LA, Kavanagh BD, Paulino AC et al (2010) Radiation-associated kidney injury. Int J Radiat Oncol Biol Phys 76:S108–S115CrossRefPubMedGoogle Scholar
  4. 4.
    Dewit L, Anninga JK, Hoefnagel CA et al (1990) Radiation injury in the human kidney: a prospective analysis using specific scintigraphic and biochemical endpoints. Int J Radiat Oncol Biol Phys 19:977–983CrossRefPubMedGoogle Scholar
  5. 5.
    Dubrow RA (1994) Radiation changes in the hollow viscera. Semin Roentgenol 29:38–52CrossRefPubMedGoogle Scholar
  6. 6.
    Haneder S, Boda-Heggemann J, Schoenberg SO et al (2012) Functional magnetic resonance imaging for evaluation of radiation-induced renal damage. Radiologe 52:243–251CrossRefPubMedGoogle Scholar
  7. 7.
    Hermans R (2003) Imaging of mandibular osteoradionecrosis. Neuroimaging Clin N Am 13:597–604CrossRefPubMedGoogle Scholar
  8. 8.
    Inoue T, Shiomi H, Oh R‑J (2015) Stereotactic body radiotherapy for Stage I lung cancer with chronic obstructive pulmonary disease: special reference to survival and radiation-induced pneumonitis. J Radiat Res 56:727–734CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Iyer R, Jhingran A (2006) Radiation injury: imaging findings in the chest, abdomen and pelvis after therapeutic radiation. Cancer Imaging 6:S131–139CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Kano H, Kondziolka D, Lobato-Polo J et al (2010) T1/T2 matching to differentiate tumor growth from radiation effects after stereotactic radiosurgery. Neurosurgery 66:486–491 (discussion 491–482)CrossRefPubMedGoogle Scholar
  11. 11.
    Kishimoto R, Mizoe JE, Komatsu S et al (2005) MR imaging of brain injury induced by carbon ion radiotherapy for head and neck tumors. Magn Reson Med Sci 4:159–164CrossRefPubMedGoogle Scholar
  12. 12.
    Kramer MR, Estenne M, Berkman N et al (1993) Radiation-induced pulmonary veno-occlusive disease. Chest 104:1282–1284CrossRefPubMedGoogle Scholar
  13. 13.
    Kwek JW, Iyer RB, Dunnington J et al (2006) Spectrum of imaging findings in the abdomen after radiotherapy. AJR Am J Roentgenol 187:1204–1211CrossRefPubMedGoogle Scholar
  14. 14.
    Libshitz HI (1994) Radiation changes in bone. Semin Roentgenol 29:15–37CrossRefPubMedGoogle Scholar
  15. 15.
    Libshitz HI, Dubrow RA, Loyer EM et al (1996) Radiation change in normal organs: an overview of body imaging. Eur Radiol 6:786–795CrossRefPubMedGoogle Scholar
  16. 16.
    Libshitz HI, Southard ME (1974) Complications of radiation therapy: the thorax. Semin Roentgenol 9:41–49CrossRefPubMedGoogle Scholar
  17. 17.
    Maturen KE, Feng MU, Wasnik AP et al (2013) Imaging effects of radiation therapy in the abdomen and pelvis: evaluating “innocent bystander” tissues. Radiographics 33:599–619CrossRefPubMedGoogle Scholar
  18. 18.
    Meixel AJ, Hauswald H, Delorme S et al (2018) From radiation osteitis to osteoradionecrosis: incidence and MR morphology of radiation-induced sacral pathologies following pelvic radiotherapy. Eur Radiol.  https://doi.org/10.1007/s00330-018-5325-2 PubMedGoogle Scholar
  19. 19.
    Movsas B, Raffin TA, Epstein AH et al (1997) Pulmonary radiation injury. Chest 111:1061–1076CrossRefPubMedGoogle Scholar
  20. 20.
    Nomayr A, Lell M, Sweeney R et al (2001) MRI appearance of radiation-induced changes of normal cervical tissues. Eur Radiol 11:1807–1817CrossRefPubMedGoogle Scholar
  21. 21.
    Osler P, Bredella MA, Hess KA et al (2016) Sacral insufficiency fractures are common after high-dose radiation for sacral chordomas treated with or without surgery. Clin Orthop Relat Res 474:766–772CrossRefPubMedGoogle Scholar
  22. 22.
    Pan CC, Kavanagh BD, Dawson LA et al (2010) Radiation-associated liver injury. Int J Radiat Oncol Biol Phys 76:S94–S100CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Patel P, Baradaran H, Delgado D et al (2017) MR perfusion-weighted imaging in the evaluation of high-grade gliomas after treatment: a systematic review and meta-analysis. Neuro-oncology 19:118–127CrossRefPubMedGoogle Scholar
  24. 24.
    Rachinger W, Goetz C, Popperl G et al (2005) Positron emission tomography with O‑(2-[18 F]fluoroethyl)-l-tyrosine versus magnetic resonance imaging in the diagnosis of recurrent gliomas. Neurosurgery 57:505–511 (discussion 505–511)CrossRefPubMedGoogle Scholar
  25. 25.
    Schlemmer HP, Bachert P, Herfarth KK et al (2001) Proton MR spectroscopic evaluation of suspicious brain lesions after stereotactic radiotherapy. AJNR Am J Neuroradiol 22:1316–1324PubMedGoogle Scholar
  26. 26.
    Sheline GE (1977) Radiation therapy of brain tumors. Cancer 39:873–881CrossRefPubMedGoogle Scholar
  27. 27.
    Sheppard DG, Libshitz HI (2001) Post-radiation sarcomas: a review of the clinical and imaging features in 63 cases. Clin Radiol 56:22–29CrossRefPubMedGoogle Scholar
  28. 28.
    Sonis ST (2011) Oral mucositis. Anticancer Drugs 22:607–612CrossRefPubMedGoogle Scholar
  29. 29.
    Tomita H, Kita T, Hayashi K et al (2012) Radiation-induced myositis mimicking chest wall tumor invasion in two patients with lung cancer: a PET/CT study. Clin Nucl Med 37:168–169CrossRefPubMedGoogle Scholar
  30. 30.
    Welzel T, Niethammer A, Mende U et al (2008) Diffusion tensor imaging screening of radiation-induced changes in the white matter after prophylactic cranial irradiation of patients with small cell lung cancer: first results of a prospective study. AJNR Am J Neuroradiol 29:379–383CrossRefPubMedGoogle Scholar
  31. 31.
    Giordano FA, Welzel G, Abo-Madyan Y, Wenz F (2012) Potential toxicities of prophylactic cranial irradiation. Transl Lung Cancer Res 1(4):254–262PubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Medizin Verlag GmbH, ein Teil von Springer Nature 2018

Authors and Affiliations

  1. 1.Radiologische Klinik, Abt. für Radioonkologie u. Strahlentherapie, Universitätsklinikum HeidelbergHeidelbergDeutschland

Personalised recommendations