Advertisement

Der Nervenarzt

, Volume 90, Issue 9, pp 907–913 | Cite as

Neue Biomarker für die Alzheimer-Krankheit in Liquor und Blut

  • Jonathan Vogelgsang
  • Jens WiltfangEmail author
Leitthema

Zusammenfassung

Entsprechend der aktuellen Leitlinie „Demenzen“ werden die Demenzbiomarker Amyloid-β1–42 sowie die Tau-Proteine Gesamt-Tau und das phosphorylierte Tau-Epitop 181 für die liquorbasierte neurochemische Demenzdiagnostik empfohlen. Mehrere Studien weisen deutlich darauf hin, dass die Bestimmung des Amyloid-β42-zu-Amyloid-β40-Peptid-Quotienten der alleinigen Interpretation von Amyloid-β1–42 überlegen ist und daher in der klinischen Routine angewandt werden sollte. In den vergangenen Jahren wurden jedoch verschiedene weitere Biomarker, sowohl im lumbalen Liquor als auch im Blut, vorgestellt. Neben der liquorbasierten neurochemischen Demenzdiagnostik wurden zwischenzeitlich vielversprechende Ansätze zur Messung von Amyloid-β-Peptiden im Blut beschrieben, welche bereits aktuell in klinischen Therapiestudien für die blutbasierte Frühdiagnostik der Alzheimer-Demenz genutzt werden können und voraussichtlich nach weiterer Validierung und Assayoptimierung in naher Zukunft auch für die klinische Routinediagnostik zur Verfügung stehen werden.

Schlüsselwörter

Demenzdiagnostik Liquor Blut Amyloid-β-Peptide Früherkennung 

New biomarkers for Alzheimer’s disease in cerebrospinal fluid and blood

Abstract

In accordance with the current German dementia guidelines, the dementia biomarkers amyloid beta 42, the tau peptides total tau and phosphorylated tau 181 are recommended for cerebrospinal fluid (CSF)-based diagnostics of dementia. Several studies have clearly shown that determination of the amyloid beta 42 to amyloid beta 40 peptide ratio is superior to the interpretation of amyloid beta 42 alone and should be implemented in the clinical work-up; however, in recent years different studies have presented many other innovative CSF and blood-based biomarkers. Besides CSF-based neurochemical diagnostics of dementia promising novel protocols for the detection of amyloid beta peptides in blood have meanwhile been published, which can currently be used in clinical studies for blood-based early diagnostics of Alzheimer’s dementia. Following further validation and assay optimization these blood assays should be available for routine diagnostics in the near future.

Keywords

Dementia diagnostics Cerebrospinal fluid Blood Amyloid beta peptide Early detection 

Notes

Einhaltung ethischer Richtlinien

Interessenkonflikt

J. Wiltfang erhielt in den letzten 3 Jahren Berater- oder Vortragshonorare von Pfizer, Eli Lilly, Hoffmann-La-Roche, MSD Sharp + Dome, Janssen-Cilag GmbH, Immungenetics AG, Boehringer Ingelheim und Abbot. J. Wiltfang hat Patente mit Relevanz für die Demenzdiagnostik angemeldet: EP1270592B1, US 6,849,416, EP2095128B1 und EP3105589A1. J. Vogelgsang gibt an, dass kein Interessenkonflikt besteht.

Für diesen Beitrag wurden von den Autoren keine Studien an Menschen oder Tieren durchgeführt. Für die aufgeführten Studien gelten die jeweils dort angegebenen ethischen Richtlinien.

Literatur

  1. 1.
    Baiardi S, Abu‐Rumeileh S, Rossi M et al (2018) Antemortem CSF A β 42/A β 40 ratio predicts Alzheimer’s disease pathology better than A β 42 in rapidly progressive dementias. Ann Clin Transl Neurol.  https://doi.org/10.1002/acn3.697 Google Scholar
  2. 2.
    Baldeiras I, Santana I, Leitão MJ et al (2018) Addition of the Aβ42/40 ratio to the cerebrospinal fluid biomarker profile increases the predictive value for underlying Alzheimer’s disease dementia in mild cognitive impairment. Alzheimers Res Ther 10:33.  https://doi.org/10.1186/s13195-018-0362-2 CrossRefGoogle Scholar
  3. 3.
    Baldeiras I, Santana I, Leitão MJ et al (2019) Erlangen Score as a tool to predict progression from mild cognitive impairment to dementia in Alzheimer’s disease. Alzheimers Res Ther 11:2.  https://doi.org/10.1186/s13195-018-0456-x CrossRefGoogle Scholar
  4. 4.
    Bouter C, Vogelgsang J, Wiltfang J (2019) Comparison between amyloid-PET and CSF amyloid-β biomarkers in a clinical cohort with memory deficits. Clin Chim Acta 492:62–68.  https://doi.org/10.1016/j.cca.2019.02.005 CrossRefGoogle Scholar
  5. 5.
    del Campo M, Mollenhauer B, Bertolotto A et al (2012) Recommendations to standardize preanalytical confounding factors in Alzheimer’s and Parkinson’s disease cerebrospinal fluid biomarkers: an update. Biomark Med 6:419–430.  https://doi.org/10.2217/bmm.12.46 CrossRefGoogle Scholar
  6. 6.
    Deuschl G, Maier W (2016) S3-Leitlinie „Demenzen“. http://www.dgn.org/leitlinien (Erstellt: 25. Jan. 2016). Zugegriffen: 29. Nov. 2017Google Scholar
  7. 7.
    Dumurgier J, Schraen S, Gabelle A et al (2015) Cerebrospinal fluid amyloid-β 42/40 ratio in clinical setting of memory centers: a multicentric study. Alzheimers Res Ther 7:1–9.  https://doi.org/10.1186/s13195-015-0114-5 CrossRefGoogle Scholar
  8. 8.
    Fourier A, Portelius E, Zetterberg H et al (2015) Pre-analytical and analytical factors influencing Alzheimer’s disease cerebrospinal fluid biomarkers variability. Clin Chim Acta.  https://doi.org/10.1016/j.cca.2015.05.024 Google Scholar
  9. 9.
    Gaiottino J, Norgren N, Dobson R et al (2013) Increased Neurofilament light chain blood levels in Neurodegenerative neurological diseases. PLoS ONE 8:1–9.  https://doi.org/10.1371/journal.pone.0075091 CrossRefGoogle Scholar
  10. 10.
    Gronewold J, Klafki H‑W, Baldelli E et al (2016) Factors responsible for plasma β‑Amyloid accumulation in chronic kidney disease. Mol Neurobiol 53:3136–3145.  https://doi.org/10.1007/s12035-015-9218-y CrossRefGoogle Scholar
  11. 11.
    Kaneko N, Nakamura A, Washimi Y et al (2014) Novel plasma biomarker surrogating cerebral amyloid deposition. Proc Japan Acad Ser B 90:353–364.  https://doi.org/10.2183/pjab.90.353 CrossRefGoogle Scholar
  12. 12.
    Kaneko N, Yamamoto R, Sato T‑A, Tanaka K (2014) Identification and quantification of amyloid beta-related peptides in human plasma using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Proc Jpn Acad, Ser B, Phys Biol Sci 90:104–117.  https://doi.org/10.2183/pjab.90.104 CrossRefGoogle Scholar
  13. 13.
    Kim Y, Yoo YK, Kim HY et al (2019) Comparative analyses of plasma amyloid-β levels in heterogeneous and monomerized states by interdigitated microelectrode sensor system. Sci Adv 5:eaav1388.  https://doi.org/10.1126/sciadv.aav1388 CrossRefGoogle Scholar
  14. 14.
    Klafki HW, Wiltfang J, Staufenbiel M (1996) Electrophoretic separation of betaA4 peptides (1-40) and (1-42). Anal Biochem 237:24–29.  https://doi.org/10.1006/abio.1996.0195 CrossRefGoogle Scholar
  15. 15.
    Kuhle J, Barro C, Andreasson U et al (2016) Comparison of three analytical platforms for quantification of the neurofilament light chain in blood samples: ELISA, electrochemiluminescence immunoassay and Simoa. Clin Chem Lab Med 54:1655–1661.  https://doi.org/10.1515/cclm-2015-1195 CrossRefGoogle Scholar
  16. 16.
    Lewczuk P, Ermann N, Andreasson U et al (2018) Plasma neurofilament light as a potential biomarker of neurodegeneration in Alzheimer’s disease. Alzheimers Res Ther 10:71.  https://doi.org/10.1186/s13195-018-0404-9 CrossRefGoogle Scholar
  17. 17.
    Lewczuk P, Esselmann H, Otto M et al (2004) Neurochemical diagnosis of Alzheimer’s dementia by CSF Abeta42, Abeta42/Abeta40 ratio and total tau. Neurobiol Aging 25:273–281.  https://doi.org/10.1016/S0197-4580(03)00086-1 CrossRefGoogle Scholar
  18. 18.
    Lewczuk P, Matzen A, Blennow K et al (2016) Cerebrospinal fluid Aβ42/40 corresponds better than Aβ42 to Amyloid PET in alzheimer’s disease. J Alzheimer’s Dis 55:813–822.  https://doi.org/10.3233/JAD-160722 CrossRefGoogle Scholar
  19. 19.
    Lewczuk P, Zimmermann R, Wiltfang J, Kornhuber J (2009) Neurochemical dementia diagnostics: a simple algorithm for interpretation of the CSF biomarkers. J Neural Transm 116:1163–1167.  https://doi.org/10.1007/s00702-009-0277-y CrossRefGoogle Scholar
  20. 20.
    Maler JM, Klafki HW, Paul S et al (2007) Urea-based two-dimensional electrophoresis of beta-amyloid peptides in human plasma: evidence for novel Aβ species. Proteomics 7:3815–3820.  https://doi.org/10.1002/pmic.200700311 CrossRefGoogle Scholar
  21. 21.
    Mattsson N, Andreasson U, Zetterberg H, Blennow K (2017) Association of plasma Neurofilament light with Neurodegeneration in patients with alzheimer disease. Jama Neurol 74:557–566.  https://doi.org/10.1001/jamaneurol.2016.6117 CrossRefGoogle Scholar
  22. 22.
    Mattsson N, Cullen NC, Andreasson U et al (2019) Association between longitudinal plasma Neurofilament light and Neurodegeneration in patients with alzheimer disease. Jama Neurol.  https://doi.org/10.1001/jamaneurol.2019.0765 Google Scholar
  23. 23.
    Molinuevo JL, Ayton S, Batrla R et al (2018) Current state of Alzheimer’s fluid biomarkers. Acta Neuropathol 136:821–853.  https://doi.org/10.1007/s00401-018-1932-x CrossRefGoogle Scholar
  24. 24.
    Nabers A, Hafermann H, Wiltfang J, Gerwert K (2019) Aβ and tau structure-based biomarkers for a blood- and CSF-based two-step recruitment strategy to identify patients with dementia due to Alzheimer’s disease. Alzheimer’s Dement Diagnosis Assess Dis Monit 11:257–263.  https://doi.org/10.1016/j.dadm.2019.01.008 Google Scholar
  25. 25.
    Nabers A, Ollesch J, Schartner J et al (2016) Amyloid-β-secondary structure distribution in cerebrospinal fluid and blood measured by an immuno-infrared-sensor: a Biomarker candidate for alzheimer’s disease. Anal Chem 88:2755–2762.  https://doi.org/10.1021/acs.analchem.5b04286 CrossRefGoogle Scholar
  26. 26.
    Nabers A, Perna L, Lange J et al (2018) Amyloid blood biomarker detects Alzheimer’s disease. Embo Mol Med e8763.  https://doi.org/10.15252/emmm.201708763 Google Scholar
  27. 27.
    Nakamura A, Kaneko N, Villemagne VL et al (2018) High performance plasma amyloid-β biomarkers for Alzheimer’s disease. Nature 554:249–254.  https://doi.org/10.1038/nature25456 CrossRefGoogle Scholar
  28. 28.
    Olsson B, Lautner R, Andreasson U et al (2016) CSF and blood biomarkers for the diagnosis of Alzheimer’s disease: a systematic review and meta-analysis. Lancet Neurol 15:673–684.  https://doi.org/10.1016/S1474-4422(16)00070-3 CrossRefGoogle Scholar
  29. 29.
    Ovod V, Ramsey KN, Mawuenyega KG et al (2017) Amyloid β concentrations and stable isotope labeling kinetics of human plasma specific to central nervous system amyloidosis. Alzheimer’s Dement 13:841–849.  https://doi.org/10.1016/j.jalz.2017.06.2266 CrossRefGoogle Scholar
  30. 30.
    Shahpasand-Kroner H, Klafki H, Bauer C et al (2018) A two-step immunoassay for the simultaneous assessment of Aβ38, Aβ40 and Aβ42 in human blood plasma supports the Aβ42/Aβ40 ratio as a promising biomarker candidate of Alzheimer’s disease. Alzheimers Res Ther 10:121.  https://doi.org/10.1186/s13195-018-0448-x CrossRefGoogle Scholar
  31. 31.
    Teunissen CE, Chiu M‑J, Yang C‑C et al (2018) Plasma Amyloid-β (Aβ42) correlates with cerebrospinal fluid Aβ42 in alzheimer’s disease. J Alzheimer’s Dis 62:1857–1863.  https://doi.org/10.3233/JAD-170784 CrossRefGoogle Scholar
  32. 32.
    Verberk IMW, Slot RE, Verfaillie SCJ et al (2018) Plasma Amyloid as Prescreener for the earliest alzheimer pathological changes. Ann Neurol 84:648–658.  https://doi.org/10.1002/ana.25334 CrossRefGoogle Scholar
  33. 33.
    Vogelgsang J, Shahpasand-Kroner H, Vogelgsang R et al (2018) Multiplex immunoassay measurement of amyloid-β42 to amyloid-β40 ratio in plasma discriminates between dementia due to Alzheimer’s disease and dementia not due to Alzheimer’s disease. Exp Brain Res 236:1241–1250.  https://doi.org/10.1007/s00221-018-5210-x CrossRefGoogle Scholar
  34. 34.
    Vogelgsang J, Vukovich R, Wedekind D, Wiltfang J (2019) Higher level of mismatch in APOE ε 4 carriers for Amyloid-beta peptide alzheimer’s disease Biomarkers in cerebrospinal fluid. ASN Neuro 11:175909141984552.  https://doi.org/10.1177/1759091419845524 CrossRefGoogle Scholar
  35. 35.
    Vogelgsang J, Wedekind D, Bouter C et al (2018) Reproducability of alzheimer’s disease cerebrospinal fluid-Biomarker measurements under clinical routine conditions. J Alzheimers Dis 62:203–212.  https://doi.org/10.3233/JAD-170793 CrossRefGoogle Scholar
  36. 36.
    Wiltfang J, Esselmann H, Bibl M et al (2007) Amyloid beta peptide ratio 42/40 but not A beta 42 correlates with phospho-Tau in patients with low- and high-CSF A beta 40 load. J Neurochem 101:1053–1059.  https://doi.org/10.1111/j.1471-4159.2006.04404.x CrossRefGoogle Scholar
  37. 37.
    Zhao Y, Xin Y, Meng S et al (2019) Neurofilament light chain protein in neurodegenerative dementia: a systematic review and network meta-analysis. Neurosci Biobehav Rev 102:123–138.  https://doi.org/10.1016/j.neubiorev.2019.04.014 CrossRefGoogle Scholar

Copyright information

© Springer Medizin Verlag GmbH, ein Teil von Springer Nature 2019

Authors and Affiliations

  1. 1.Universitätsmedizin Göttingen (UMG), Klinik für Psychiatrie und PsychotherapieGeorg-August-UniversitätGöttingenDeutschland
  2. 2.Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE)GöttingenDeutschland
  3. 3.iBiMED, Medical Science DepartmentUniversität AveiroAveiroPortugal

Personalised recommendations