Advertisement

Der Nervenarzt

, Volume 90, Issue 9, pp 884–890 | Cite as

Hat die Alzheimer-Forschung versagt?

Das Scheitern amyloidbasierter klinischer Studien
  • Christian HaassEmail author
  • Johannes Levin
Leitthema

Zusammenfassung

Zahlreiche auf der Amyloid-Hypothese basierende klinische Studien sind gescheitert. Heißt dies nun, dass die Mechanismen der Alzheimer-Erkrankung neu überdacht werden müssen und dass Amyloid nicht der Auslöser der Erkrankung ist? Gegen diese fatalistische Ansicht spricht die Genetik der familiären Alzheimer-Erkrankung. Mutationen in allen assoziierten Genen beeinflussen ohne Ausnahme die Amyloidaggregation und eine protektive Mutation reduziert die Amyloidbildung. Klinische Studien scheitern, weil Sekretaseinhibitoren die Prozessierung zahlreicher physiologisch wichtiger Substrate der Sekretasen verhindern und die Erkrankung lange vor den ersten Symptomen angelegt wird. Am Beispiel anderer prototypischer Amyloidosen wird eine erfolgreiche Behandlung mit Amyloidmedikamenten beschrieben und neue mikrogliale Zielmoleküle werden diskutiert.

Schlüsselwörter

Demenz Amyloid-Hypothese Sekretasen Immuntherapie Klinische Studien 

Did Alzheimer research fail entirely?

Failure of amyloid-based clinical studies

Abstract

Numerous amyloid-based clinical studies have recently failed. Does this mean that the mechanisms of Alzheimer’s disease have to be reinvestigated and that amyloid is not the trigger of the disease? Strong genetic evidence from familial Alzheimer’s disease contradicts this fatalistic opinion. Mutations in all genes associated with familial Alzheimer’s disease affect amyloid metabolism and aggregation. Moreover, a protective mutation reduces amyloid production by 20–30% throughout the lifetime. Clinical studies rather failed because secretase inhibitors block cleavage of numerous other physiologically important substrates of secretases. Moreover, the disease is initiated decades before symptoms occur. Successful treatment attempts with anti-amyloid medication based on other prototype amyloidoses are described. Finally, new therapeutic target molecules expressed in microglia cells are discussed.

Keywords

Dementia Amyloid hypothesis Secretases Immunotherapy Clinical studies 

Notes

Einhaltung ethischer Richtlinien

Interessenkonflikt

C. Haass kooperiert mit DENALI, hat 2018 an einem Advisory Board Meeting von Biogen teilgenommen, ist Berater bei ISAR-Bioscience und hat ein Sprecherhonorar von Novartis und Roche erhalten. J. Levin gibt an, keinen Interessenkonflikt zu haben.

Für diesen Beitrag wurden von den Autoren keine Studien an Menschen oder Tieren durchgeführt. Für die aufgeführten Studien gelten die jeweils dort angegebenen ethischen Richtlinien.

Literatur

  1. 1.
    Bateman RJ, Xiong C, Benzinger TL, Fagan AM, Goate A, Fox NC, Marcus DS, Cairns NJ, Xie X, Blazey TM, Holtzman DM, Santacruz A, Buckles V, Oliver A, Moulder K, Aisen PS, Ghetti B, Klunk WE, McDade E, Martins RN, Masters CL, Mayeux R, Ringman JM, Rossor MN, Schofield PR, Sperling RA, Salloway S, Morris JC, Dominantly Inherited Alzheimer (2012) Clinical and biomarker changes in dominantly inherited Alzheimer’s disease. N Engl J Med 367:795–804CrossRefGoogle Scholar
  2. 2.
    Berk JL, Suhr OB, Obici L, Sekijima Y, Zeldenrust SR, Yamashita T, Heneghan MA, Gorevic PD, Litchy WJ, Wiesman JF, Nordh E, Corato M, Lozza A, Cortese A, Robinson-Papp J, Colton T, Rybin DV, Bisbee AB, Ando Y, Ikeda S, Seldin DC, Merlini G, Skinner M, Kelly JW, Dyck PJ, Diflunisal Trial Consortium (2013) Repurposing diflunisal for familial amyloid polyneuropathy: A randomized clinical trial. JAMA 310:2658–2667CrossRefGoogle Scholar
  3. 3.
    Chartier-Harlin MC, Crawford F, Houlden H, Warren A, Hughes D, Fidani L, Goate A, Rossor M, Roques P, Hardy J et al (1991) Early-onset Alzheimer’s disease caused by mutations at codon 717 of the beta-amyloid precursor protein gene. Nature 353:844–846CrossRefGoogle Scholar
  4. 4.
    Citron M, Westaway D, Xia W, Carlson G, Diehl T, Levesque G, Johnson-Wood K, Lee M, Seubert P, Davis A, Kholodenko D, Motter R, Sherrington R, Perry B, Yao H, Strome R, Lieberburg I, Rommens J, Kim S, Schenk D, Fraser P, St George Hyslop P, Selkoe DJ (1997) Mutant presenilins of Alzheimer’s disease increase production of 42-residue amyloid beta-protein in both transfected cells and transgenic mice. Nat Med 3:67–72CrossRefGoogle Scholar
  5. 5.
    Coelho T, Inês M, Conceição I, Soares M, de Carvalho M, Costa J (2018) Natural history and survival in stage 1 Val30Met transthyretin familial amyloid polyneuropathy. Neurology 91:e1999–e2009CrossRefGoogle Scholar
  6. 6.
    Coelho T, Maia LF, da Silva AM, Cruz MW, Planté-Bordeneuve V, Suhr OB, Conceição I, Schmidt HH, Trigo P, Kelly JW, Labaudinière R, Chan J, Packman J, Grogan DR (2013) Long-term effects of tafamidis for the treatment of transthyretin familial amyloid polyneuropathy. J Neurol 260:2802–2814CrossRefGoogle Scholar
  7. 7.
    Coelho T, Maia LF, da Silva AM, Cruz MW, Planté-Bordeneuve V, Lozeron P, Suhr OB, Campistol JM, Conceição IM, Schmidt HH, Trigo P, Kelly JW, Labaudiniere R, Chan J, Packman J, Wilson A, Grogan DR (2012) Tafamidis for transthyretin familial amyloid polyneuropathy: A randomized, controlled trial. Neurology 79:785–792CrossRefGoogle Scholar
  8. 8.
    Colonna M, Wang Y (2016) TREM2 variants: New keys to decipher Alzheimer disease pathogenesis. Nat Rev Neurosci 17:201–207CrossRefGoogle Scholar
  9. 9.
    Corder EH, Saunders AM, Strittmatter WJ, Schmechel DE, Gaskell PC, Small GW, Roses AD, Haines JL, Pericak-Vance MA (1993) Gene dose of apolipoprotein E type 4 allele and the risk of Alzheimer’s disease in late onset families. Science 261:921–923CrossRefGoogle Scholar
  10. 10.
    Crump CJ, Johnson DS, Li YM (2013) Development and mechanism of gamma-secretase modulators for Alzheimer’s disease. Biochemistry 52:3197–3216CrossRefGoogle Scholar
  11. 11.
    Davidson YS, Robinson A, Prasher VP, Mann DMA (2018) The age of onset and evolution of Braak tangle stage and Thal amyloid pathology of Alzheimer’s disease in individuals with Down syndrome. Acta Neuropathol Commun 6:56CrossRefGoogle Scholar
  12. 12.
    Doran E, Keator D, Head E, Phelan MJ, Kim R, Totoiu M, Barrio JR, Small GW, Potkin SG, Lott IT (2017) Down syndrome, partial trisomy 21, and absence of alzheimer’s disease: The role of APP. J Alzheimers Dis 56:459–470CrossRefGoogle Scholar
  13. 13.
    Egan MF, Kost J, Voss T, Mukai Y, Aisen PS, Cummings JL, Tariot PN, Vellas B, van Dyck CH, Boada M, Zhang Y, Li W, Furtek C, Mahoney E, Harper Mozley L, Mo Y, Sur C, Michelson D (2019) Randomized trial of verubecestat for prodromal alzheimer’s disease. N Engl J Med 380:1408–1420CrossRefGoogle Scholar
  14. 14.
    Gertz MA, Dispenzieri A, Sher T (2015) Pathophysiology and treatment of cardiac amyloidosis. Nat Rev Cardiol 12:91–102CrossRefGoogle Scholar
  15. 15.
    Golde TE, Estus S, Younkin LH, Selkoe DJ, Younkin SG (1992) Processing of the amyloid protein precursor to potentially amyloidogenic derivatives. Science 255:728–730CrossRefGoogle Scholar
  16. 16.
    Götzl JK, Brendel M, Werner G, Parhizkar S, Sebastian Monasor L, Kleinberger G, Colombo AV, Deussing M, Wagner M, Winkelmann J, Diehl-Schmid J, Levin J, Fellerer K, Reifschneider A, Bultmann S, Bartenstein P, Rominger A, Tahirovic S, Smith ST, Madore C, Butovsky O, Capell A, Haass C (2019) Opposite microglial activation stages upon loss of PGRN or TREM2 result in reduced cerebral glucose metabolism. EMBO Mol Med 11.  https://doi.org/10.15252/emmm.201809711 Google Scholar
  17. 17.
    Haass C (1997) Presenilins: Genes for life and death. Neuron 18:687–690CrossRefGoogle Scholar
  18. 18.
    Haass C, Schlossmacher MG, Hung AY, Vigo-Pelfrey C, Mellon A, Ostaszewski BL, Lieberburg I, Koo EH, Schenk D, Teplow DB et al (1992) Amyloid beta-peptide is produced by cultured cells during normal metabolism. Nature 359:322–325CrossRefGoogle Scholar
  19. 19.
    Haass C, Selkoe DJ (2007) Soluble protein oligomers in neurodegeneration: Lessons from the Alzheimer’s amyloid beta-peptide. Nat Rev Mol Cell Biol 8:101–112CrossRefGoogle Scholar
  20. 20.
    Hardy J, Selkoe DJ (2002) The amyloid hypothesis of Alzheimer’s disease: Progress and problems on the road to therapeutics. Science 297:353–356CrossRefGoogle Scholar
  21. 21.
    Hardy JA, Higgins GA (1992) Alzheimer’s disease: The amyloid cascade hypothesis. Science 256:184–185CrossRefGoogle Scholar
  22. 22.
    Hemming ML, Elias JE, Gygi SP, Selkoe DJ (2008) Proteomic profiling of gamma-secretase substrates and mapping of substrate requirements. Plos Biol 6:e257CrossRefGoogle Scholar
  23. 23.
    Higashi S, Iseki E, Yamamoto R, Minegishi M, Hino H, Fujisawa K, Togo T, Katsuse O, Uchikado H, Furukawa Y, Kosaka K, Arai H (2007) Concurrence of TDP-43, tau and alpha-synuclein pathology in brains of Alzheimer’s disease and dementia with Lewy bodies. Brain Res 1184:284–294CrossRefGoogle Scholar
  24. 24.
    Jonsson T, Atwal JK, Steinberg S, Snaedal J, Jonsson PV, Bjornsson S, Stefansson H, Sulem P, Gudbjartsson D, Maloney J, Hoyte K, Gustafson A, Liu Y, Lu Y, Bhangale T, Graham RR, Huttenlocher J, Bjornsdottir G, Andreassen OA, Jonsson EG, Palotie A, Behrens TW, Magnusson OT, Kong A, Thorsteinsdottir U, Watts RJ, Stefansson K (2012) A mutation in APP protects against Alzheimer’s disease and age-related cognitive decline. Nature 488:96–99CrossRefGoogle Scholar
  25. 25.
    Jucker M, Walker LC (2015) Neurodegeneration: Amyloid-beta pathology induced in humans. Nature 525:193–194CrossRefGoogle Scholar
  26. 26.
    Kang J, Lemaire HG, Unterbeck A, Salbaum JM, Masters CL, Grzeschik KH, Multhaup G, Beyreuther K, MÜller-Hill B (1987) The precursor of Alzheimer’s disease amyloid A4 protein resembles a cell-surface receptor. Nature 325:733–736CrossRefGoogle Scholar
  27. 27.
    Keren-Shaul H, Spinrad A, Weiner A, Matcovitch-Natan O, Dvir-Szternfeld R, Ulland TK, David E, Baruch K, Lara-Astaiso D, Toth B, Itzkovitz S, Colonna M, Schwartz M, Amit I (2017) A unique Microglia type associated with restricting development of alzheimer’s disease. Cell 169:1276–1290CrossRefGoogle Scholar
  28. 28.
    Kim J, Basak JM, Holtzman DM (2009) The role of apolipoprotein E in Alzheimer’s disease. Neuron 63:287–303CrossRefGoogle Scholar
  29. 29.
    Kim J, Eltorai AE, Jiang H, Liao F, Verghese PB, Kim J, Stewart FR, Basak JM, Holtzman DM (2012) Anti-apoE immunotherapy inhibits amyloid accumulation in a transgenic mouse model of Abeta amyloidosis. J Exp Med 209:2149–2156CrossRefGoogle Scholar
  30. 30.
    Krasemann S, Madore C, Cialic R, Baufeld C, Calcagno N, El Fatimy R, Beckers L, O’Loughlin E, Xu Y, Fanek Z, Greco DJ, Smith ST, Tweet G, Humulock Z, Zrzavy T, Conde-Sanroman P, Gacias M, Weng Z, Chen H, Tjon E, Mazaheri F, Hartmann K, Madi A, Ulrich JD, Glatzel M, Worthmann A, Heeren J, Budnik B, Lemere C, Ikezu T, Heppner FL, Litvak V, Holtzman DM, Lassmann H, Weiner HL, Ochando J, Haass C, Butovsky O (2017) The TREM2-APOE pathway drives the transcriptional phenotype of dysfunctional microglia in neurodegenerative diseases. Immunity 47:566–581CrossRefGoogle Scholar
  31. 31.
    Kuhn PH, Koroniak K, Hogl S, Colombo A, Zeitschel U, Willem M, Volbracht C, Schepers U, Imhof A, Hoffmeister A, Haass C, Rossner S, Brase S, Lichtenthaler SF (2012) Secretome protein enrichment identifies physiological BACE1 protease substrates in neurons. EMBO J 31:3157–3168CrossRefGoogle Scholar
  32. 32.
    Mazaheri F, Snaidero N, Kleinberger G, Madore C, Daria A, Werner G, Krasemann S, Capell A, Trumbach D, Wurst W, Brunner B, Bultmann S, Tahirovic S, Kerschensteiner M, Misgeld T, Butovsky O, Haass C (2017) TREM2 deficiency impairs chemotaxis and microglial responses to neuronal injury. EMBO Rep 18:1186–1198CrossRefGoogle Scholar
  33. 33.
    McDade E, Bateman RJ (2017) Stop Alzheimer’s before it starts. Nature 547:153–155CrossRefGoogle Scholar
  34. 34.
    Meyer-Luehmann M, Coomaraswamy J, Bolmont T, Kaeser S, Schaefer C, Kilger E, Neuenschwander A, Abramowski D, Frey P, Jaton AL, Vigouret JM, Paganetti P, Walsh DM, Mathews PM, Ghiso J, Staufenbiel M, Walker LC, Jucker M (2006) Exogenous induction of cerebral beta-amyloidogenesis is governed by agent and host. Science 313:1781–1784CrossRefGoogle Scholar
  35. 35.
    Parhizkar S, Arzberger T, Brendel M, Kleinberger G, Deussing M, Focke C, Nuscher B, Xiong M, Ghasemigharagoz A, Katzmarski N, Krasemann S, Lichtenthaler SF, Müller SA, Colombo A, Monasor LS, Tahirovic S, Herms J, Willem M, Pettkus N, Butovsky O, Bartenstein P, Edbauer D, Rominger A, Ertürk A, Grathwohl SA, Neher JJ, Holtzman DM, Meyer-Luehmann M, Haass C (2019) Loss of TREM2 function increases amyloid seeding but reduces plaque-associated ApoE. Nat Neurosci 22:191–204CrossRefGoogle Scholar
  36. 36.
    Preische O, Schultz SA, Apel A, Kuhle J, Kaeser SA, Barro C, Graber S, Kuder-Buletta E, LaFougere C, Laske C, Voglein J, Levin J, Masters CL, Martins R, Schofield PR, Rossor MN, Graff-Radford NR, Salloway S, Ghetti B, Ringman JM, Noble JM, Chhatwal J, Goate AM, Benzinger TLS, Morris JC, Bateman RJ, Wang G, Fagan AM, McDade EM, Gordon BA, Jucker M, Dominantly Inherited Alzheimer (2019) Serum neurofilament dynamics predicts neurodegeneration and clinical progression in presymptomatic Alzheimer’s disease. Nat Med 25:277–283CrossRefGoogle Scholar
  37. 37.
    Selkoe DJ, Hardy J (2016) The amyloid hypothesis of Alzheimer’s disease at 25 years. Embo Mol Med 8:595–608CrossRefGoogle Scholar
  38. 38.
    Sevigny J, Chiao P, Bussière T, Weinreb PH, Williams L, Maier M, Dunstan R, Salloway S, Chen T, Ling Y, O’Gorman J, Qian F, Arastu M, Li M, Chollate S, Brennan MS, Quintero-Monzon O, Scannevin RH, Arnold HM, Engber T, Rhodes K, Ferrero J, Hang Y, Mikulskis A, Grimm J, Hock C, Nitsch RM, Sandrock A (2016) The antibody aducanumab reduces Abeta plaques in Alzheimer’s disease. Nature 537:50–56CrossRefGoogle Scholar
  39. 39.
    Wang Y, Ulland TK, Ulrich JD, Song W, Tzaferis JA, Hole JT, Yuan P, Mahan TE, Shi Y, Gilfillan S, Cella M, Grutzendler J, DeMattos RB, Cirrito JR, Holtzman DM, Colonna M (2016) TREM2-mediated early microglial response limits diffusion and toxicity of amyloid plaques. J Exp Med 213:667–675CrossRefGoogle Scholar
  40. 40.
    Wolfe MS, Xia W, Ostaszewski BL, Diehl TS, Kimberly WT, Selkoe DJ (1999) Two transmembrane aspartates in presenilin-1 required for presenilin endoproteolysis and gamma-secretase activity. Nature 398:513–517CrossRefGoogle Scholar

Copyright information

© Springer Medizin Verlag GmbH, ein Teil von Springer Nature 2019

Authors and Affiliations

  1. 1.Lehrstuhl für Stoffwechselbiochemie, Biomedizinisches Centrum (BMC), Fakultät für MedizinLudwig-Maximilians-Universität MünchenMünchenDeutschland
  2. 2.Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE) MünchenMünchenDeutschland
  3. 3.Münchner Cluster für Systemneurologie (SyNergy)MünchenDeutschland
  4. 4.Neurologische Klinik und PoliklinikLudwig-Maximilians-Universität MünchenMünchenDeutschland

Personalised recommendations