Advertisement

Der Nervenarzt

, Volume 90, Issue 10, pp 1005–1012 | Cite as

Hirnstimulation zur Behandlung schlaganfallbedingter motorischer Defizite

  • Caroline Tscherpel
  • Christian GrefkesEmail author
Leitthema
  • 285 Downloads

Zusammenfassung

Die Funktionserholung schlaganfallbedingter Defizite wird wesentlich durch neuronale Reorganisationsprozesse bestimmt. Neurorehabilitative Ansätze zielen daher darauf ab, positive Prozesse zu unterstützen und maladaptive neuronale Vorgänge zu supprimieren. In diesem Übersichtsartikel resümieren wir die wesentlichen Befunde aus Studien zur nichtinvasiven und invasiven Hirnstimulation hinsichtlich eines Nutzens für die Behandlung motorischer Defizite nach einem Schlaganfall. Darüber hinaus diskutieren wir auch mögliche Ansatzpunkte, um neuromodulatorische Ansätze effektiver zu gestalten und damit das Outcome der Patienten zu verbessern.

Schlüsselwörter

Transkranielle Magnetstimulation Transkranielle Gleichstromstimulation Neurorehabilitation Funktionelle Magnetresonanztomographie Konnektivität 

Brain stimulation for treating stroke-related motor deficits

Abstract

Functional recovery of stroke-related deficits is mainly achieved through neural reorganization. Neurorehabilitative approaches, therefore, aim at supporting positive processes while suppressing maladaptive neuronal processes. This review summarizes the main findings of studies using non-invasive and invasive brain stimulation with respect to the benefits of the treatment for motor deficits after stroke. In addition, the article discusses possible approaches to enhance the effectiveness of neuromodulatory approaches and thus improve the outcome of patients.

Keywords

Transcranial magnetic stimulation Transcranial direct current stimulation Neurorehabilitation Functional magnetic resonance imaging Connectivity 

Notes

Einhaltung ethischer Richtlinien

Interessenkonflikt

C. Tscherpel und C. Grefkes geben an, dass kein Interessenkonflikt besteht.

Für diesen Beitrag wurden von den Autoren keine Studien an Menschen oder Tieren durchgeführt. Für die aufgeführten Studien gelten die jeweils dort angegebenen ethischen Richtlinien.

Literatur

  1. 1.
    Ackerley SJ, Byblow WD, Barber PA et al (2015) Primed physical therapy enhances recovery of upper limb function in chronic stroke patients. Neurorehabil Neural Repair 30:339–348CrossRefPubMedGoogle Scholar
  2. 2.
    Allman C, Amadi U, Winkler AM et al (2016) Ipsilesional anodal tDCS enhances the functional benefits of rehabilitation in patients after stroke. Sci Transl Med 8:330re1CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Avenanti A, Coccia M, Ladavas E et al (2012) Low-frequency rTMS promotes use-dependent motor plasticity in chronic stroke: a randomized trial. Neurology 78:256–264CrossRefPubMedGoogle Scholar
  4. 4.
    Barker AT, Jalinous R, Freeston IL (1985) Non-invasive magnetic stimulation of human motor cortex. Lancet 1:1106–1107CrossRefPubMedGoogle Scholar
  5. 5.
    Batsikadze G, Moliadze V, Paulus W et al (2013) Partially non-linear stimulation intensity-dependent effects of direct current stimulation on motor cortex excitability in humans. J Physiol 591:1987–2000CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Bestmann S, Baudewig J, Siebner HR, Rothwell JC (2005) BOLD MRI responses to repetitive TMS over human dorsal premotor cortex. Neuroimage 28:22–29CrossRefPubMedGoogle Scholar
  7. 7.
    Bienenstock EL, Cooper LN, Munro PW (1982) Theory for the development of neuron selectivity: orientation specificity and binocular interaction in visual cortex. J Neurosci 2:32–48CrossRefPubMedGoogle Scholar
  8. 8.
    Brown JA, Lutsep H, Cramer SC, Weinand M (2003) Motor cortex stimulation for enhancement of recovery after stroke: case report. Neurol Res 25:815–818CrossRefPubMedGoogle Scholar
  9. 9.
    Brown JA, Lutsep HL, Weinand M, Cramer SC (2006) Motor cortex stimulation for the enhancement of recovery from stroke: a prospective, multicenter safety study. Neurosurgery 58:464–473CrossRefPubMedGoogle Scholar
  10. 10.
    Chang MC, Kim DY, Park DH (2015) Enhancement of cortical excitability and lower limb motor function in patients with stroke by transcranial direct current stimulation. Brain Stimul 8:561–566CrossRefPubMedGoogle Scholar
  11. 11.
    Delvaux V, Alagona G, Gérard P et al (2003) Post-stroke reorganization of hand motor area: a 1-year prospective follow-up with focal transcranial magnetic stimulation. Clin Neurophysiol 114:1217–1225CrossRefPubMedGoogle Scholar
  12. 12.
    Di Lazzaro V, Dileone M, Capone F et al (2014) Immediate and late modulation of interhemipheric imbalance with bilateral transcranial direct current stimulation in acute stroke. Brain Stimul 7:841–848CrossRefPubMedGoogle Scholar
  13. 13.
    Du J, Tian L, Liu W et al (2016) Effects of repetitive transcranial magnetic stimulation on motor recovery and motor cortex excitability in patients with stroke: a randomized controlled trial. Eur J Neurol 23:1666–1672CrossRefPubMedGoogle Scholar
  14. 14.
    Elsner B, Kugler J, Pohl M, Mehrholz J (2016) Transcranial direct current stimulation (tDCS) for improving activities of daily living, and physical and cognitive functioning, in people after stroke. Cochrane Database Syst Rev.  https://doi.org/10.1002/14651858.CD009645.pub3 CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Fink GR, Grefkes C, Weiss PH (2016) New hope for ameliorating stroke-induced deficits? Brain 139:1002–1004CrossRefPubMedGoogle Scholar
  16. 16.
    Forogh B, Ahadi T, Nazari M et al (2017) The effect of repetitive transcranial magnetic stimulation on postural stability after acute stroke: a clinical trial. Basic Clin Neurosci 8:405–411CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Fridriksson J, Rorden C, Elm J et al (2018) Transcranial direct current stimulation vs sham stimulation to treat aphasia after stroke. JAMA Neurol 75:1470–1477CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Geroin C, Picelli A, Munari D et al (2011) Combined transcranial direct current stimulation and robot-assisted gait training in patients with chronic stroke: a preliminary comparison. Clin Rehabil 25:537–548CrossRefPubMedGoogle Scholar
  19. 19.
    Grefkes C, Fink GR (2014) Connectivity-based approaches in stroke and recovery of function. Lancet Neurol 13:206–216CrossRefPubMedGoogle Scholar
  20. 20.
    Grefkes C, Nowak DA, Eickhoff SB et al (2008) Cortical connectivity after subcortical stroke assessed with functional magnetic resonance imaging. Ann Neurol 63:236–246CrossRefPubMedGoogle Scholar
  21. 21.
    Grefkes C, Ward NS (2014) Cortical reorganization after stroke: how much and how functional? Neuroscientist 20:56–70CrossRefPubMedGoogle Scholar
  22. 22.
    Grefkes C, Nowak DA, Wang LE et al (2010) Modulating cortical connectivity in stroke patients by rTMS assessed with fMRI and dynamic causal modeling – ScienceDirect. Neuroimage 2013:233–242CrossRefGoogle Scholar
  23. 23.
    Guan Y‑Z, Li J, Zhang X‑W et al (2017) Effectiveness of repetitive transcranial magnetic stimulation (rTMS) after acute stroke: a one-year longitudinal randomized trial. CNS Neurosci Ther 23:940–946CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Hamada M, Murase N, Hasan A et al (2013) The role of interneuron networks in driving human motor cortical plasticity. Cereb Cortex 23:1593–1605CrossRefPubMedGoogle Scholar
  25. 25.
    Hankey GJ (2017) Stroke. Lancet 389:641–654CrossRefPubMedGoogle Scholar
  26. 26.
    Hao Z, Wang D, Zeng Y, Liu M (2013) Repetitive transcranial magnetic stimulation for improving function after stroke. Cochrane Database Syst Rev.  https://doi.org/10.1002/14651858.cd008862.pub2 CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Harvey RL, Edwards D, Dunning K et al (2018) Randomized sham-controlled trial of navigated repetitive transcranial magnetic stimulation for motor recovery in stroke. Stroke 49:2138–2146CrossRefPubMedGoogle Scholar
  28. 28.
    Hesse S, Waldner A, Mehrholz J et al (2011) Combined transcranial direct current stimulation and robot-assisted arm training in subacute stroke patients. Neurorehabil Neural Repair 25:838–846CrossRefPubMedGoogle Scholar
  29. 29.
    Huang M, Harvey RL, Stoykov ME et al (2008) Cortical stimulation for upper limb recovery following ischemic stroke: a small phase II pilot study of a fully implanted stimulator. Top Stroke Rehabil 15:160–172CrossRefPubMedGoogle Scholar
  30. 30.
    Huang Y‑Z, Edwards MJ, Rounis E et al (2005) Theta burst stimulation of the human motor cortex. Neuron 45:201–206CrossRefPubMedGoogle Scholar
  31. 31.
    Huang Y‑Z, Lin L‑F, Chang K‑H et al (2018) Priming with 1‑Hz repetitive transcranial magnetic stimulation over contralesional leg motor cortex does not increase the rate of regaining ambulation within 3 months of stroke. Am J Phys Med Rehabil 97:339–345CrossRefPubMedGoogle Scholar
  32. 32.
    Hummel FC, Cohen LG (2006) Non-invasive brain stimulation: a new strategy to improve neurorehabilitation after stroke? Lancet Neurol 5:708–712CrossRefPubMedGoogle Scholar
  33. 33.
    Keeser D, Meindl T, Bor J et al (2011) Prefrontal transcranial direct current stimulation changes connectivity of resting-state networks during fMRI. J Neurosci 31:15284–15293CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Khedr EM, Shawky OA, El-Hammady DH et al (2013) Effect of anodal versus cathodal transcranial direct current stimulation on stroke rehabilitation. Neurorehabil Neural Repair 27:592–601CrossRefPubMedGoogle Scholar
  35. 35.
    Klomjai W, Lackmy-Vallée A, Roche N et al (2015) Repetitive transcranial magnetic stimulation and transcranial direct current stimulation in motor rehabilitation after stroke: an update. Ann Phys Rehabil Med 58:220–224CrossRefPubMedGoogle Scholar
  36. 36.
    Lai C‑J, Wang C‑P, Tsai P‑Y et al (2015) Corticospinal integrity and motor impairment predict outcomes after excitatory repetitive transcranial magnetic stimulation: a preliminary study. Arch Phys Med Rehabil 96:69–75CrossRefPubMedGoogle Scholar
  37. 37.
    Langhorne P, Bernhardt J, Kwakkel G (2011) Stroke rehabilitation. Lancet 377:1693–1702CrossRefPubMedGoogle Scholar
  38. 38.
    Lefaucheur J‑P, André-Obadia N, Antal A et al (2014) Evidence-based guidelines on the therapeutic use of repetitive transcranial magnetic stimulation (rTMS). Clin Neurophysiol 125:2150–2206CrossRefPubMedGoogle Scholar
  39. 39.
    Lefaucheur J‑P, Antal A, Ayache SS et al (2017) Evidence-based guidelines on the therapeutic use of transcranial direct current stimulation (tDCS). Clin Neurophysiol 128:56–92CrossRefPubMedGoogle Scholar
  40. 40.
    Levy R, Ruland S, Weinand M et al (2008) Cortical stimulation for the rehabilitation of patients with hemiparetic stroke: a multicenter feasibility study of safety and efficacy. J Neurosurg 108:707–714CrossRefPubMedGoogle Scholar
  41. 41.
    Li J, Meng X‑M, Li R‑Y et al (2016) Effects of different frequencies of repetitive transcranial magnetic stimulation on the recovery of upper limb motor dysfunction in patients with subacute cerebral infarction. Neural Regen Res 11:1584CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Liew S‑L, Santarnecchi E, Buch ER, Cohen LG (2014) Non-invasive brain stimulation in neurorehabilitation: local and distant effects for motor recovery. Front Hum Neurosci 8:265CrossRefGoogle Scholar
  43. 43.
    Lin L‑F, Chang K‑H, Huang Y‑Z et al (2018) Simultaneous stimulation in bilateral leg motor areas with intermittent theta burst stimulation to improve functional performance after stroke: a feasibility pilot study. Eur J Phys Rehabil Med 55:1–23Google Scholar
  44. 44.
    Lin Y, Hu C, Chi J et al (2015) Effects of repetitive transcranial magnetic stimulation of the unaffected hemisphere leg motor area in patients with subacute stroke and substantial leg impairment: a pilot study. J Rehabil Med 47:305–310CrossRefPubMedGoogle Scholar
  45. 45.
    Lindenberg R, Renga V, Zhu LL et al (2010) Bihemispheric brain stimulation facilitates motor recovery in chronic stroke patients. Baillieres Clin Neurol 75:2176–2184Google Scholar
  46. 46.
    Long H, Wang H, Zhao C et al (2018) Effects of combining high- and low-frequency repetitive transcranial magnetic stimulation on upper limb hemiparesis in the early phase of stroke. Restor Neurol Neurosci 36:21–30PubMedGoogle Scholar
  47. 47.
    Lüdemann-Podubecká J, Bösl K, Theilig S et al (2015) The effectiveness of 1 Hz rTMS over the primary motor area of the unaffected hemisphere to improve hand function after stroke depends on hemispheric dominance. Brain Stimul 8:823–830CrossRefPubMedGoogle Scholar
  48. 48.
    Matsuura A, Onoda K, Oguro H, Yamaguchi S (2015) Magnetic stimulation and movement-related cortical activity for acute stroke with hemiparesis. Eur J Neurol 22:1526–1532CrossRefPubMedGoogle Scholar
  49. 49.
    Murase N, Duque J, Mazzocchio R, Cohen LG (2004) Influence of interhemispheric interactions on motor function in chronic stroke. Ann Neurol 55:400–409CrossRefPubMedGoogle Scholar
  50. 50.
    Nitsche MA, Paulus W (2000) Excitability changes induced in the human motor cortex by weak transcranial direct current stimulation. J Physiol 527:633–639CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Nitsche MA, Paulus W (2001) Sustained excitability elevations induced by transcranial DC motor cortex stimulation in humans. Neurology 57:1899–1901CrossRefPubMedGoogle Scholar
  52. 52.
    Nowak DA, Grefkes C, Dafotakis M et al (2008) Effects of low-frequency repetitive transcranial magnetic stimulation of the contralesional primary motor cortex on movement kinematics and neural activity in subcortical stroke. Arch Neurol 65:741–747CrossRefPubMedGoogle Scholar
  53. 53.
    Plautz EJ, Barbay S, Frost SB et al (2013) Post-infarct cortical plasticity and behavioral recovery using concurrent cortical stimulation and rehabilitative training: a feasibility study in primates. Neurol Res 25:801–810CrossRefGoogle Scholar
  54. 54.
    Plow EB, Carey JR, Nudo RJ, Pascual-Leone A (2009) Invasive cortical stimulation to promote recovery of function after stroke. Stroke 40:1926–1931CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Polanía R, Nitsche MA, Paulus W (2010) Modulating functional connectivity patterns and topological functional organization of the human brain with transcranial direct current stimulation. Hum Brain Mapp 32:1236–1249CrossRefPubMedGoogle Scholar
  56. 56.
    Polanía R, Paulus W, Nitsche MA (2011) Modulating cortico-striatal and thalamo-cortical functional connectivity with transcranial direct current stimulation. Hum Brain Mapp 33:2499–2508CrossRefPubMedGoogle Scholar
  57. 57.
    Rastgoo M, Naghdi S, Nakhostin Ansari N et al (2015) Effects of repetitive transcranial magnetic stimulation on lower extremity spasticity and motor function in stroke patients. Disabil Rehabil 38:1918–1926CrossRefGoogle Scholar
  58. 58.
    Rehme AK, Eickhoff SB, Wang LE et al (2011) Dynamic causal modeling of cortical activity from the acute to the chronic stage after stroke. Neuroimage 55:1147–1158CrossRefPubMedGoogle Scholar
  59. 59.
    Rehme AK, Fink GR, von Cramon DY, Grefkes C (2011) The role of the contralesional motor cortex for motor recovery in the early days after stroke assessed with longitudinal FMRI. Cereb Cortex 21:756–768CrossRefPubMedGoogle Scholar
  60. 60.
    Rossi C, Sallustio F, Di Legge S et al (2013) Transcranial direct current stimulation of the affected hemisphere does not accelerate recovery of acute stroke patients. Eur J Neurol 20:202–204CrossRefPubMedGoogle Scholar
  61. 61.
    Rossini PM, Burke D, Chen R et al (2015) Non-invasive electrical and magnetic stimulation of the brain, spinal cord, roots and peripheral nerves: basic principles and procedures for routine clinical and research application. An updated report from an I.F.C.N. Committee. Clin Neurophysiol 126:1071–1107CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Sasaki N, Abo M, Hara T et al (2016) High-frequency rTMS on leg motor area in the early phase of stroke. Acta Neurol Belg 117:189–194CrossRefPubMedGoogle Scholar
  63. 63.
    Sattler V, Acket B, Raposo N et al (2014) Anodal tDCS combined with radial nerve stimulation promotes hand motor recovery in the acute phase after Ischemic stroke. Neurorehabil Neural Repair 29:743–754CrossRefGoogle Scholar
  64. 64.
    Teskey GC, Flynn C, Goertzen CD et al (2013) Cortical stimulation improves skilled forelimb use following a focal ischemic infarct in the rat. Neurol Res 25:794–800CrossRefGoogle Scholar
  65. 65.
    Veerbeek JM, Kwakkel G, van Wegen EEH et al (2011) Early prediction of outcome of activities of daily living after stroke. Stroke 42:1482–1488CrossRefPubMedGoogle Scholar
  66. 66.
    Viana RT, Laurentino GEC, Souza RJP et al (2014) Effects of the addition of transcranial direct current stimulation to virtual reality therapy after stroke: a pilot randomized controlled trial. NeuroRehabilitation 34:437–446PubMedGoogle Scholar
  67. 67.
    Volz LJ, Rehme AK, Michely J et al (2016) Shaping early reorganization of neural networks promotes motor function after stroke. Cereb Cortex 26:2882–2894CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Ward NS, Brown MM, Thompson AJ, Frackowiak RSJ (2003) Neural correlates of motor recovery after stroke: a longitudinal fMRI study. Brain 126:2476–2496CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Medizin Verlag GmbH, ein Teil von Springer Nature 2019

Authors and Affiliations

  1. 1.Klinik und Poliklinik für NeurologieUniversitätsklinik KölnKölnDeutschland
  2. 2.Institut für Neurowissenschaften und Medizin (INM-3)Forschungszentrum JülichJülichDeutschland

Personalised recommendations