Advertisement

Der Nervenarzt

, Volume 90, Issue 2, pp 160–166 | Cite as

Das Darmmikrobiom bei der Parkinson-Krankheit

  • J. R. BedarfEmail author
  • F. Hildebrand
  • F. Goeser
  • P. Bork
  • U. Wüllner
Übersichten

Zusammenfassung

Die überwiegende Anzahl der Parkinson(PD)-Fälle ist sporadisch und ihre Ätiologie ist trotz umfangreicher wissenschaftlicher Untersuchungen nicht geklärt. Die Charakterisierung einer etwaigen PD-spezifischen Zusammensetzung des Mikrobioms ist Gegenstand aktueller Kohortenstudien und Ausdruck der möglichen Relevanz der Mikrobiota in der PD-Pathogenese. Trotz methodischer Unterschiede und variabler Kohortengrößen zeigen die bisher verfügbaren Studien reproduzierbare bzw. konsistente Ergebnisse in Bezug auf die PD-spezifischen Veränderungen der Darmbakterien. Durch Anwendung metagenomischer Sequenzierungsverfahren ist es sogar möglich, PD-Fälle bereits in einer sehr frühen Krankheitsphase anhand der veränderten Verhältnisse einzelner Mikrobiota von Gesunden zu unterscheiden. Unter anderem Mikroben, die im Zusammenhang mit einer gestörten Darmbarriere oder Immunfunktion stehen, wie beispielsweise die Genera Akkermansia, Lactobacillus, Faecalibacterium und Prevotella zeigen sich dabei signifikant über- oder unterrepräsentiert. Möglicherweise existiert sogar ein prodromales Mikrobiom, da sich eine vergleichbare mikrobielle Verschiebung auch bei Patienten mit einer REM-Schlafstörung („REM sleep behavior disorder“, RBD), einem Risikofaktor für die spätere Entwicklung einer Synukleinopathie wie z. B. der PD, findet.

Schlüsselwörter

Morbus Parkinson Mikrobiom Kurzkettige Fettsäuren Mikrobiota Tremor 

The gut microbiome in Parkinson’s disease

Abstract

The vast majority of Parkinson’s disease (PD) cases are of sporadic origin and despite extensive research in recent years, the etiology still remains unclear. Several current case control studies are aiming to characterize a putative PD-specific composition of the gut microbiome, reflecting the potential relevance of microbiota in the pathogenesis of PD. Although methodologies and cohort sizes differed, the currently available studies showed reproducible or consistent results in terms of PD-specific alterations to the intestinal bacteria. By applying metagenomic sequencing procedures, it is even possible to distinguish PD cases from healthy individuals at a very early disease stage by means of individually modified microbiota. Among others, microbiota that are associated with an altered intestinal barrier or immune function, such as Akkermansia, Lactobacillus, Faecalibacterium and Prevotella were significantly over-represented or under-represented. There may even be a prodromal microbiome, as a comparable microbial shift is also found in patients with rapid eye movement (REM) sleep behavior disorder (RBD), a risk factor for the later development of synucleinopathies, such as PD.

Keywords

Parkinson’s disease Microbiome Short chain fatty acids Microbiota Tremor 

Notes

Einhaltung ethischer Richtlinien

Interessenkonflikt

J.R. Bedarf, F. Hildebrand, F. Goeser, P. Bork und U. Wüllner geben an, dass kein Interessenkonflikt besteht.

Dieser Beitrag beinhaltet keine von den Autoren durchgeführten Studien an Menschen oder Tieren.

Literatur

  1. 1.
    Antunes L, Frasquilho S, Ostaszewski M, Weber J, Longhino L, Antony P et al (2016) Similar alpha-Synuclein staining in the colon mucosa in patients with Parkinson’s disease and controls. Mov Disord 31(10):1567–1570CrossRefGoogle Scholar
  2. 2.
    Bedarf JR, Hildebrand F, Coelho LP, Sunagawa S, Bahram M, Goeser F, Bork P, Wüllner U (2017) Functional implications of microbial and viral gut metagenome changes in early stage L‑DOPA-naïve Parkinson’s disease patients. Genome Med 9(1):39.  https://doi.org/10.1186/s13073-017-0428-y CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Borre YE, O’Keeffe GW, Clarke G, Stanton C, Dinan TG, Cryan JF (2014) Microbiota and neurodevelopmental windows: implications for brain disorders. Trends Mol Med 20(9):509–518CrossRefGoogle Scholar
  4. 4.
    Braak H, Del Tredici K (2016) Potential pathways of abnormal tau and α‑Synuclein dissemination in sporadic Alzheimer’s and Parkinson’s diseases. Cold Spring Harb Perspect Biol 8(11):a23630–1.  https://doi.org/10.1101/cshperspect.a023630 CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Collins SM, Surette M, Bercik P (2012) The interplay between the intestinal microbiota and the brain. Nat Rev Microbiol 10(11):735–742CrossRefGoogle Scholar
  6. 6.
    Costea PI et al (2018) Enterotypes in the landscape of gut microbial community composition. Nat Microbiol 3(1):8–16.  https://doi.org/10.1038/s41564-017-0072-8 CrossRefPubMedGoogle Scholar
  7. 7.
    Devos D, Lebouvier T, Lardeux B, Biraud M, Rouaud T, Pouclet H et al (2013) Colonic inflammation in Parkinson’s disease. Neurobiol Dis 50:42–48CrossRefGoogle Scholar
  8. 8.
    Dingemans J et al (2014) The deletion of tonB-dependent receptor genes is part of the genome reduction process that occurs during adaptation of Pseudomonas Aeruginosa to the cystic fibrosis lung. Pathog Dis 71(1):26–38CrossRefGoogle Scholar
  9. 9.
    Engels C, Ruscheweyh HJ, Beerenwinkel N, Lacroix C, Schwab C (2016) The common gut microbe Eubacterium hallii also contributes to intestinal propionate formation. Front Microbiol 7:713.  https://doi.org/10.3389/fmicb.2016.00713 CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Erny D, Hrabe de Angelis AL, Jaitin D, Wieghofer P, Staszewski O, David E et al (2015) Host microbiota constantly control maturation and function of microglia in the CNS. Nat Neurosci 18(7):965–977CrossRefGoogle Scholar
  11. 11.
    Everard A, Belzer C, Geurts L, Ouwerkerk JP, Druart C, Bindels LB et al (2013) Cross-talk between Akkermansia muciniphila and intestinal epithelium controls diet-induced obesity. Proc Natl Acad Sci USA 110(22):9066–9071CrossRefGoogle Scholar
  12. 12.
    Forsyth CB, Shannon KM, Kordower JH, Voigt RM, Shaikh M, Jaglin JA et al (2011) Increased intestinal permeability correlates with sigmoid mucosa alpha-synuclein staining and endotoxin exposure markers in early Parkinson’s disease. PLoS ONE 6(12):e28032CrossRefGoogle Scholar
  13. 13.
    Ganesh BP, Klopfleisch R, Loh G, Blaut M (2013) Commensal Akkermansia muciniphila exacerbates gut inflammation in salmonella Typhimurium-infected gnotobiotic mice. PLoS ONE 8(9):e74963.  https://doi.org/10.1371/journal.pone.0074963 CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Hasegawa S, Goto S, Tsuji H, Okuno T, Asahara T, Nomoto K, Shibata A, Fujisawa Y, Minato T, Okamoto A, Ohno K, Hirayama M (2015) Intestinal Dysbiosis and lowered serum Lipopolysaccharide-binding protein in Parkinson’s disease. PLoS ONE 10(11):e142164.  https://doi.org/10.1371/journal.pone.0142164 CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Heintz-Buschart A, Pandey U, Wicke T, Sixel-Döring F, Janzen A, Sittig-Wiegand E, Trenkwalder C, Oertel WH, Mollenhauer B, Wilmes P (2018) The nasal and gut microbiome in Parkinson’s disease and idiopathic rapid eye movement sleep behavior disorder. Mov Disord 33(1):88–98.  https://doi.org/10.1002/mds.27105 CrossRefPubMedGoogle Scholar
  16. 16.
    Heintz-Buschart A, Wilmes P (2018) Human gut Microbiome: function matters. Trends Microbiol 26(7):563–574.  https://doi.org/10.1016/j.tim.2017.11.002 CrossRefPubMedGoogle Scholar
  17. 17.
    Hernandez DG, Reed X, Singleton AB (2016) Genetics in Parkinson disease: Mendelian versus non-Mendelian inheritance. J Neurochem 139(Suppl 1):59–74.  https://doi.org/10.1111/jnc.13593 CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Hildebrand F et al (2014) LotuS: an efficient and user-friendly OTU processing pipeline. Microbiome 2(1):30.  https://doi.org/10.1186/2049-2618-2-30 CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Hill-Burns EM, Debelius JW, Morton JT, Wissemann WT, Lewis MR, Wallen ZD, Peddada SD, Factor SA, Molho E, Zabetian CP, Knight R, Payami H (2017) Parkinson’s disease and Parkinson’s disease medications have distinct signatures of the gut microbiome. Mov Disord 32(5):739–749.  https://doi.org/10.1002/mds.26942 CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Hopfner F, Künstner A, Müller SH, Künzel S, Zeuner KE, Margraf NG, Deuschl G, Baines JF, Kuhlenbäumer G (2017) Gut microbiota in Parkinson disease in a northern German cohort. Brain Res 1667:41–45.  https://doi.org/10.1016/j.brainres.2017.04.019 CrossRefPubMedGoogle Scholar
  21. 21.
    Kang CS, Ban M, Choi EJ, Moon HG, Jeon JS, Kim DK et al (2013) Extracellular vesicles derived from gut microbiota, especially Akkermansia muciniphila, protect the progression of dextran sulfate sodium-induced colitis. PLoS ONE 8(10):e76520CrossRefGoogle Scholar
  22. 22.
    Kelly CJ, Zheng L, Campbell EL, Saeedi B, Scholz CC, Bayless AJ et al (2015) Crosstalk between microbiota-derived short-chain fatty acids and intestinal epithelial HIF augments tissue barrier function. Cell Host Microbe 17(5):662–671CrossRefGoogle Scholar
  23. 23.
    Keshavarzian A, Green SJ, Engen PA, Voigt RM, Naqib A, Forsyth CB et al (2015) Colonic bacterial composition in Parkinson’s disease. Mov Disord 30(10):1351–1360CrossRefGoogle Scholar
  24. 24.
    Klingelhoefer L, Reichmann H (2015) Pathogenesis of Parkinson disease – the gut-brain axis and environmental factors. Nat Rev Neurol 11(11):625–636.  https://doi.org/10.1038/nrneurol.2015.197 CrossRefPubMedGoogle Scholar
  25. 25.
    Lamas B, Richard ML, Leducq V, Pham HP, Michel ML, Da Costa G et al (2016) CARD9 impacts colitis by altering gut microbiota metabolism of tryptophan into aryl hydrocarbon receptor ligands. Nat Med 22(6):598–605.  https://doi.org/10.1038/nm.4102 CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Li W, Wu X, Hu X, Wang T, Liang S, Duan Y, Jin F, Qin B (2017) Structural changes of gut microbiota in Parkinson’s disease and its correlation with clinical features. Sci China Life Sci 60(11):1223–1233.  https://doi.org/10.1007/s11427-016-9001-4 CrossRefPubMedGoogle Scholar
  27. 27.
    Luan H, Liu LF, Tang Z, Zhang M, Chua KK, Song JX et al (2015) Comprehensive urinary metabolomic profiling and identification of potential noninvasive marker for idiopathic Parkinson’s disease. Sci Rep 5(1):13888.  https://doi.org/10.1038/srep13888 CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Luna E, Luk KC (2015) Bent out of shape: alpha-Synuclein misfolding and the convergence of pathogenic pathways in Parkinson’s disease. Febs Lett 589(24 Pt A):3749–3759CrossRefGoogle Scholar
  29. 29.
    Meijer K, de Vos P, Priebe MG (2010) Butyrate and other short-chain fatty acids as modulators of immunity: what relevance for health? Curr Opin Clin Nutr Metab Care 13(6):715–721CrossRefGoogle Scholar
  30. 30.
    Parks OB, Pociask DA, Hodzic Z, Kolls JK, Good M (2015) Interleukin-22 signaling in the regulation of intestinal health and disease. Front Cell Dev Biol 3:85–13.  https://doi.org/10.3389/fcell.2015.00085 CrossRefPubMedGoogle Scholar
  31. 31.
    Pereira PAB, Aho VTE, Paulin L, Pekkonen E, Auvinen P, Scheperjans F (2017) Oral and nasal microbiota in Parkinson’s disease. Parkinsonism Relat Disord 38:61–67.  https://doi.org/10.1016/j.parkreldis.2017.02.026 CrossRefPubMedGoogle Scholar
  32. 32.
    Petrov VA, Saltykova IV, Zhukova IA, Alifirova VM, Zhukova NG, Dorofeeva YB, Tyakht AV, Kovarsky BA, Alekseev DG, Kostryukova ES, Mironova YS, Izhboldina OP, Nikitina MA, Perevozchikova TV, Fait EA, Babenko VV, Vakhitova MT, Govorun VM, Sazonov AE (2017) Analysis of gut Microbiota in patients with Parkinson’s disease. Bull Exp Biol Med 162(6):734–737.  https://doi.org/10.1007/s10517-017-3700-7 CrossRefPubMedGoogle Scholar
  33. 33.
    Sampson TR, Debelius JW, Thron T, Janssen S, Shastri GG, Ilhan ZE et al (2016) Gut microbiota regulate motor deficits and neuroinflammation in a model of Parkinson’s disease. Cell 167(6):1469–1480.  https://doi.org/10.1016/j.cell.2016.11.018.e12 CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Sanchez-Guajardo V, Tentillier N, Romero-Ramos M (2015) The relation between alpha-synuclein and microglia in Parkinson’s disease: Recent developments. Neuroscience 302:47–58CrossRefGoogle Scholar
  35. 35.
    Scheperjans F, Aho V, Pereira PA, Koskinen K, Paulin L, Pekkonen E et al (2015) Gut microbiota are related to Parkinson’s disease and clinical phenotype. Mov Disord 30(3):350–358CrossRefGoogle Scholar
  36. 36.
    Singh N, Gurav A, Sivaprakasam S, Brady E, Padia R, Shi H et al (2014) Activation of Gpr109a, receptor for niacin and the commensal metabolite butyrate, suppresses colonic inflammation and carcinogenesis. Immunity 40(1):128–139.  https://doi.org/10.1016/j.immuni.2013.12.007 CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Surmeier DJ, Obeso JA, Halliday GM (2017) Parkinson’s disease is not simply a Prion disorder. J Neurosci 37(41):9799–9807.  https://doi.org/10.1523/JNEUROSCI.1787-16.2017 CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Unger MM, Spiegel J, Dillmann KU, Grundmann D, Philippeit H, Burmann J et al (2016) Short chain fatty acids and gut microbiota differ between patients with Parkinson’s disease and age-matched controls. Parkinsonism Relat Disord 32:66–72CrossRefGoogle Scholar
  39. 39.
    Vandeputte D, Falony G, Vieira-Silva S, Tito RY, Joossens M, Raes J (2016) Stool consistency is strongly associated with gut microbiota richness and composition, enterotypes and bacterial growth rates. Gut 65(1):57–62.  https://doi.org/10.1136/gutjnl-2015-309618 CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Vanegas SM, Meydani M, Barnett JB, Goldin B, Kane A, Rasmussen H, Brown C, Vangay P, Knights D, Jonnalagadda S, Koecher K, Karl JP, Thomas M, Dolnikowski G, Li L, Saltzman E, Wu D, Meydani SN (2017) Substituting whole grains for refined grains in a 6-wk randomized trial has a modest effect on gut microbiota and immune and inflammatory markers of healthy adults. Am J Clin Nutr 105(3):635–650.  https://doi.org/10.3945/ajcn.116.146928 CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Vermeiren J, Van den Abbeele P, Laukens D, Vigsnaes LK, De Vos M, Boon N et al (2012) Decreased colonization of fecal Clostridium coccoides/Eubacterium rectale species from ulcerative colitis patients in an in vitro dynamic gut model with mucin environment. Fems Microbiol Ecol 79(3):685–696.  https://doi.org/10.1111/j.1574-6941.2011.01252.x CrossRefPubMedGoogle Scholar
  42. 42.
    Wüllner U, Kaut O, deBoni L, Piston D, Schmitt I (2016) DNA methylation in Parkinson’s disease. J Neurochem 139(Suppl 1):108–120.  https://doi.org/10.1111/jnc.13646 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Medizin Verlag GmbH, ein Teil von Springer Nature 2018

Authors and Affiliations

  • J. R. Bedarf
    • 1
    • 4
    Email author
  • F. Hildebrand
    • 2
  • F. Goeser
    • 3
    • 5
  • P. Bork
    • 2
  • U. Wüllner
    • 1
    • 4
  1. 1.Klinik und Poliklinik für NeurologieUniversitätsklinikum BonnBonnDeutschland
  2. 2.Europäisches Laboratorium für MolekularbiologieEMBLHeidelbergDeutschland
  3. 3.Klinik für Innere Medizin IUniversitätsklinikum BonnBonnDeutschland
  4. 4.Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE)BonnDeutschland
  5. 5.Deutsches Zentrum für Infektionsforschung (DZIF) Standort Bonn-KölnBonnDeutschland

Personalised recommendations