The Science of Nature

, 105:61 | Cite as

The first Gondwanan borioteiioid lizard and the mid-Cretaceous dispersal event between North America and Africa

  • Romain VulloEmail author
  • Jean-Claude Rage
Original Paper


Borioteiioidea are an enigmatic group of Cretaceous lizards widely distributed in northern continents (Laurasia). Here, we describe the first borioteiioid lizard from Gondwana, represented by a new species of the polyglyphanodontine genus Bicuspidon, B. hogreli sp. nov., from the Cenomanian Kem Kem beds of Morocco. The discovery of Bicuspidon hogreli sp. nov., which is one of the oldest known member of Polyglyphanodontini, challenges previous assumptions on the center of origin and dispersal of the group. In addition, the known distribution of Bicuspidon (Cenomanian of Utah and Morocco, and Santonian–Maastrichtian of eastern Europe) suggests a complex palaeobiogeographical history for the genus. The existence of a terrestrial dispersal route persisting during the whole Early Cretaceous between North America and Africa is hypothesized to explain some similarities observed between the Cenomanian squamate assemblages of these two continents. Alternatively, dispersal between the two landmasses may have occurred by transatlantic rafting. During the Cenomanian–Santonian interval, Bicuspidon colonized the European archipelago probably from North Africa, like many “Eurogondwanan” taxa.


Squamata Borioteiioidea Polyglyphanodontini Cretaceous Africa Palaeobiogeography 



We warmly thank Bernard Hogrel for donating the specimen here described. Nour-Eddine Jalil and Richard Pyle are thanked for providing a MHNM collection number and the Zoobank LSIDs, respectively. We thank Lilian Cazes for the photographs of the specimen. Márton Rabi and two anonymous reviewers provided constructive comments that greatly helped to improve the manuscript.


  1. Apesteguía S, Daza JD, Simões TR, Rage J-C (2016) The first iguanian lizard from the Mesozoic of Africa. R Soc Open Sci 3:160462CrossRefGoogle Scholar
  2. Augé ML, Brizuela S (2014) A teiid lizard from the European Eocene suggests trans-Atlantic dispersal. 4th International Palaeontological Congress, Mendoza, Abstract volume, p. 646Google Scholar
  3. Brizuela S, Albino AM (2016) First Tupinambinae teiid (Squamata, Teiidae) from the Palaeogene of South America. Hist Biol 28:571–581CrossRefGoogle Scholar
  4. Broschinsky A, Sigogneau-Russell D (1996) Remarkable lizard remains from the Lower Cretaceous of Anoual (Morocco). Ann Paléontol 82:147–175Google Scholar
  5. Caldwell MW, Nydam RL, Palci A, Apesteguía S (2015) The oldest known snakes from the Middle Jurassic–Lower Cretaceous provide insights on snake evolution. Nat Commun 6:5996CrossRefGoogle Scholar
  6. Carranza S, Arnold EN (2003) Investigating the origin of transoceanic distributions: mtDNA shows Mabuya lizards (Reptilia, Scincidae) crossed the Atlantic twice. Syst Biodivers 1:275–282CrossRefGoogle Scholar
  7. Cavin L, Tong H, Boudad L, Meister C, Piuz A, Tabouelle J, Aarab M, Amiot R, Buffetaut E, Dyke G, Hua S, Le Lœuff J (2010) Vertebrate assemblages from the early Late Cretaceous of southeastern Morocco: An overview. J Afr Earth Sci 57:391–412CrossRefGoogle Scholar
  8. Evans SE, Manabe M (2008) An early herbivorous lizard from the Lower Cretaceous of Japan. Palaeontology 51:487–498CrossRefGoogle Scholar
  9. Evans SE, Matsumoto R (2015) An assemblage of lizards from the Early Cretaceous of Japan. Palaeontol Electron 18.2(36A):1–36Google Scholar
  10. Folie A, Codrea V (2005) New lissamphibians and squamates from the Maastrichtian of Haţeg Basin, Romania. Acta Palaeontol Pol 50:57–71Google Scholar
  11. Gardner JD, Cifelli RL (1999) A primitive snake from the Cretaceous of Utah. Spec Pap Palaeontol 60:87–100Google Scholar
  12. Gauthier JA, Kearney M, Maisano JA, Rieppel O, Behlke ADB (2012) Assembling the squamate tree of life: Perspectives from the phenotype and the fossil record. Bull Peabody Mus Nat Hist 53:3–308CrossRefGoogle Scholar
  13. Gilmore CW (1942) Osteology of Polyglyphanodon, an Upper Cretaceous lizard from Utah. Proc U S Natl Mus 92:229–265CrossRefGoogle Scholar
  14. Gilmore CW (1943) Osteology of Upper Cretaceous lizards from Utah, with a description of a new species. Proc U S Natl Mus 93:209–214CrossRefGoogle Scholar
  15. Horne GS (1994) A mid-Cretaceous ornithopod from central Honduras. J Vertebr Paleontol 14:147–150CrossRefGoogle Scholar
  16. Huttenlocker AK, Grossnickle DM, Kirkland JI, Schultz JA, Luo Z-X (2018) Late-surviving stem mammal links the lowermost Cretaceous of North America and Gondwana. Nature 558:108–112CrossRefGoogle Scholar
  17. Iturralde-Vinent MA (2006) Meso-Cenozoic Caribbean paleogeography: Implications for the historical biogeography of the region. Int Geol Rev 48:791–827CrossRefGoogle Scholar
  18. Joyce WG, Lyson TR, Kirkland JI (2016) An early bothremydid (Testudines, Pleurodira) from the Late Cretaceous (Cenomanian) of Utah, North America. PeerJ 4:e2502CrossRefGoogle Scholar
  19. Klein CG, Longrich NR, Ibrahim N, Zourhi S, Martill DM (2017) A new basal snake from the mid-Cretaceous of Morocco. Cretac Res 72:134–141CrossRefGoogle Scholar
  20. Koch JT, Brenner RL (2009) Evidence for glacioeustatic control of large, rapid sea-level fluctuations during the Albian–Cenomanian: Dakota Formation, eastern margin of Western Interior Seaway, USA. Cretac Res 30:411–423CrossRefGoogle Scholar
  21. Labails C, Olivet J-L, Aslanian D, Roest WR (2010) An alternative early opening scenario for the Central Atlantic Ocean. Earth Planet Sci Lett 297:355–368CrossRefGoogle Scholar
  22. Longrich NR, Vinther J, Pyron RA, Pisani D, Gauthier JA (2015) Biogeography of worm lizards (Amphisbaenia) driven by end-Cretaceous mass extinction. Proc R Soc B 282:20143034CrossRefGoogle Scholar
  23. Makádi L (2006) Bicuspidon aff. hatzegiensis (Squamata: Scincomorpha: Teiidae) from the Upper Cretaceous Csehbánya Formation (Hungary, Bakony Mts). Acta Geol Hung 49:373–385Google Scholar
  24. Makádi L (2013a) A new polyglyphanodontine lizard (Squamata: Borioteiioidea) from the Late Cretaceous Iharkút locality (Santonian, Hungary). Cretac Res 46:166–176CrossRefGoogle Scholar
  25. Makádi L (2013b) The first known chamopsiid lizard (Squamata) from the Upper Cretaceous of Europe (Csehbánya Formation; Hungary, Bakony Mts). Ann Paléontol 99:261–274Google Scholar
  26. Medeiros MA, Lindoso RM, Mender ID, Carvalho IS (2014) The Cretaceous (Cenomanian) continental record of the Laje do Coringa flagstone (Alcântara Formation), northeastern South America. J South Am Earth Sci 53:50–58Google Scholar
  27. Mutterlose J, Bornemann A, Herrie J (2009) The Aptian–Albian cold snap: Evidence for “mid” Cretaceous icehouse interludes. N Jb Geol Paläontol (Abh) 252:217–225Google Scholar
  28. Nydam RL (1999) Polyglyphanodontinae (Squamata: Teiidae) from the medial and Late Cretaceous: New taxa from Utah, U.S.A. and Baja California del Norte, Mexico. In: Gillette DD (ed) Vertebrate paleontology in Utah. Utah Geological Survey, Salt Lake City, pp 303–317Google Scholar
  29. Nydam RL (2002) Lizards of the Mussentuchit local fauna (Albian–Cenomanian boundary) and comments on the evolution of the Cretaceous lizard fauna of North America. J Vertebr Paleontol 22:645–660CrossRefGoogle Scholar
  30. Nydam RL (2013a) Squamates from the Jurassic and Cretaceous of North America. Palaeobio Palaeoenv 93:535–565Google Scholar
  31. Nydam RL (2013b) Lizards and snakes from the Cenomanian through Campanian of southern Utah: Filling the gap in the fossil record of Squamata from the Late Cretaceous of the Western Interior of North America. In: Titus AL, Loewen MA (eds) At the top of the Grand Staircase: The Late Cretaceous of southern Utah. Indiana University Press, Bloomington and Indianapolis, pp 370–423Google Scholar
  32. Nydam RL, Cifelli RL (2002) A new teiid lizard from the Cedar Mountain Formation (Albian–Cenomanian boundary) of Utah. J Vertebr Paleontol 22:276–285Google Scholar
  33. Nydam RL, Cifelli RL (2005) New data on the dentition of the scincomorphan lizard Polyglyphanodon sternbergi. Acta Palaeontol Pol 50:73–78Google Scholar
  34. Nydam RL, Eaton JG, Sankey J (2007) New taxa of transversely-toothed lizards (Squamata: Scincomorpha) and new information on the evolutionary history of “teiids”. J Paleontol 81:538–549CrossRefGoogle Scholar
  35. Pérez-García A (2017) A new turtle taxon (Podocnemidoidea, Bothremydidae) reveals the oldest known dispersal event of the crown Pleurodira from Gondwana to Laurasia. J Syst Palaeontol 15:709–731CrossRefGoogle Scholar
  36. Pucéat E, Lécuyer C, Reisberg L (2005) Neodymium isotope evolution of NW Tethyan upper ocean waters throughout the Cretaceous. Earth Planet Sci Lett 236:705–720CrossRefGoogle Scholar
  37. Rabi M, Sebők N (2015) A revised Eurogondwanan model: Late Cretaceous notosuchian crocodyliforms and other vertebrate taxa suggest the retention of episodic faunal links between Europe and Gondwana during most of the Cretaceous. Gondwana Res 28:1197–1211CrossRefGoogle Scholar
  38. Rabi M, Tong H, Botfalvai G (2012) A new species of the side-necked turtle Foxemys (Pelomedusoides: Bothremydidae) from the Late Cretaceous of Hungary and the historical biogeography of the Bothremydini. Geol Mag 149:662–674Google Scholar
  39. Rage J-C (1988) Un serpent primitif (Reptilia, Squamata) dans le Cénomanien (base du Crétacé supérieur). C R Acad Sci II 307:1027–1032Google Scholar
  40. Rage J-C (2013) Mesozoic and Cenozoic squamates of Europe. Palaeobio Palaeoenv 93:517–534CrossRefGoogle Scholar
  41. Rage J-C, Augé M (2010) Squamate reptiles from the middle Eocene of Lissieu (France). A landmark in the middle Eocene of Europe. Geobios 43:253–268CrossRefGoogle Scholar
  42. Rage J-C, Dutheil DB (2008) Amphibians and squamates from the Cretaceous (Cenomanian) of Morocco. A preliminary study, with description of a new genus of pipid frog. Palaeontogr Abt A 285:1–22Google Scholar
  43. Rage J-C, Werner C (1999) Mid-Cretaceous (Cenomanian) snakes from Wadi Abu Hashim, Sudan: The earliest snake assemblage. Palaeontol Afr 35:85–110Google Scholar
  44. Raxworthy CJ, Forstner MRJ, Nussbaum RA (2002) Chameleon radiation by oceanic dispersal. Nature 415:784–787CrossRefGoogle Scholar
  45. Rodríguez-López JP, Liesa CL, Pardo G, Meléndez N, Soria AR, Skilling I (2016) Glacial dropstones in the western Tethys during the late Aptian–early Albian cold snap: Palaeoclimate and palaeogeographic implications for the mid-Cretaceous. Palaeogeogr Palaeoclimatol Palaeoecol 452:11–27CrossRefGoogle Scholar
  46. Sano S, Yabe A (2017) Fauna and flora of Early Cretaceous Tetori Group in Central Japan: The clues to revealing the evolution of Cretaceous terrestrial ecosystem in East Asia. Palaeoworld 26:253–267Google Scholar
  47. Simões TR, Funston GF, Vafaeian B, Nydam RL, Doschak MR, Caldwell MW (2016) Reacquisition of the lower temporal bar in sexually dimorphic fossil lizards provides a rare case of convergent evolution. Sci Rep 6:24087CrossRefGoogle Scholar
  48. Simões TR, Caldwell MW, Talanda M, Bernardi M, Palci A, Vernygora O, Bernardini F, Mancini L, Nydam RL (2018) The origin of squamates revealed by a Middle Triassic lizard from the Italian Alps. Nature 557:706–709CrossRefGoogle Scholar
  49. Svenson GJ, Rodrigues HM (2017) A Cretaceous-aged Palaeotropical dispersal established an endemic lineage of Caribbean praying mantises. Proc R Soc B 284:20171280CrossRefGoogle Scholar
  50. Szentesi Z, Venczel M (2010) An advanced anuran from the Late Cretaceous (Santonian) of Hungary. N Jb Geol Paläontol (Abh) 256:291–302Google Scholar
  51. Trabucho-Alexandre J, van Gilst RI, Rodríguez-López JP, de Boer PL (2011) The sedimentary expression of oceanic anoxic event 1b in the North Atlantic. Sedimentology 58:1217–1246CrossRefGoogle Scholar
  52. Vasile Ş, Csiki-Sava Z, Venczel M (2013) A new madtsoiid snake from the Upper Cretaceous of the Haţeg Basin, western Romania. J Vertebr Paleontol 33:1100–1119CrossRefGoogle Scholar
  53. Vidal N, Azvolinsky A, Cruaud C, Hedges SB (2008) Origin of tropical American burrowing reptiles by transatlantic rafting. Biol Lett 4:115–118CrossRefGoogle Scholar
  54. Vullo R, Néraudeau D (2008) Cenomanian vertebrate assemblages from southwestern France: A new insight into the European mid-Cretaceous continental fauna. Cretac Res 29:930–935Google Scholar
  55. Vullo R, Néraudeau D (2010) Additional dinosaur teeth from the Cenomanian (Late Cretaceous) of Charentes, southwestern France. C R Palevol 9:121–126CrossRefGoogle Scholar
  56. Vullo R, Néraudeau D, Lenglet T (2007) Dinosaur teeth from the Cenomanian of Charentes, western France: Evidence for a mixed Laurasian–Gondwanan assemblage. J Vertebr Paleontol 27:931–943Google Scholar
  57. Vullo R, Gheerbrant E, Muizon C de, Néraudeau D (2009) The oldest modern therian mammal from Europe and its bearing on stem marsupial paleobiogeography. Proc Natl Acad Sci U S A 106:19910–19915CrossRefGoogle Scholar
  58. Vullo R, Rage J-C, Néraudeau D (2011) Anuran and squamate remains from the Cenomanian (Late Cretaceous) of Charentes, western France. J Vertebr Paleontol 31:279–291CrossRefGoogle Scholar
  59. Zaher H, Rieppel O (1999) Tooth implantation and replacement in squamates, with special reference to mosasaur lizards and snakes. Am Mus Novit 3271:1–19Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Univ Rennes, CNRS, Géosciences Rennes, UMR 6118RennesFrance
  2. 2.Sorbonne Universités, CR2P, UMR 7207, CNRS–Muséum national d’Histoire naturelle–Université Paris 6ParisFrance

Personalised recommendations