The Science of Nature

, 105:52 | Cite as

Extended mutualism between termites and gut microbes: nutritional symbionts contribute to nest hygiene

  • Tatsuya InagakiEmail author
  • Kenji Matsuura
Original Paper


All higher eukaryotes have established symbiotic relationships with diverse microorganisms. One of the most well-characterized symbiotic systems is that of termites and their intestinal microorganisms, which digest cellulose. Recently, diverse types of symbioses between gut microbes and host organisms including humans have received growing attention for various features of their complex interactions beyond nutrition. In termites, researchers are beginning to explore such function of gut symbionts, but only the contribution to internal immunity against entomopathogen is known in a few species. Here, we report that gut symbionts of the dampwood termite Zootermopsis nevadensis protect nests from the spread of the commensal bacterium Serratia marcescens, which has pathogenic potential. Defaunated termites dispersed S. marcescens in the surrounding environment by feeding on the bacteria, which then survived passage through their alimentary tracts, while non-defaunated termites did not. Loss of gut symbionts caused a significant reduction in intestinal acetate, which is an important carbon source for termites. Culture experiments showed that acetate had significant inhibitory effects on S. marcescens at a concentration as low as 12 mM, which indicated that the intestinal acetate of non-defaunated termites (40–130 mM) was capable of suppressing this bacterium. These results suggest that digestive derivatives produced by intestinal symbionts play an essential role in nest hygiene in addition to their nutritional function for termites. Our study provides a better understanding of the multifunctionality of symbiotic relationships in diverse organisms beyond nutrition.


Gut symbionts Opportunistic microbes Termite Zootermopsis nevadensis Serratia marcescens 



We thank N. Mizumoto, T. Nozaki, S. Yanagihara, T. Maeda, K. Watanabe, and J Uto for termite sampling. We also thank Y. Hongoh for helpful comments and S. dobata for checking the manuscripts.


This work was supported by Japan Society for the Promotion of Science (, No. 25221206 and 18H05268 to KM).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

114_2018_1580_MOESM1_ESM.xlsx (21 kb)
ESM 1 (XLSX 20 kb)
114_2018_1580_MOESM2_ESM.xlsx (11 kb)
ESM 2 (XLSX 11 kb)
114_2018_1580_MOESM3_ESM.xlsx (10 kb)
ESM 3 (XLSX 10 kb)


  1. Alekshun MN, Levy SB (2006) Commensals upon us. Biochem Pharmacol 71:893–900. CrossRefPubMedGoogle Scholar
  2. Altschul SF, Madden TL, Schäffer AA et al (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402. CrossRefPubMedPubMedCentralGoogle Scholar
  3. Anttila J, Kaitala V, Laakso J, Ruokolainen L (2015) Environmental variation generates environmental opportunist pathogen outbreaks. PLoS One 10:e0145511. CrossRefPubMedPubMedCentralGoogle Scholar
  4. Bignell DE, Anderson JM (1980) Determination of pH and oxygen status in the guts of lower and higher termites. J Insect Physiol 26:183–188. CrossRefGoogle Scholar
  5. Blum MS (1996) Semiochemical parsimony in the Arthropoda. Annu Rev Entomol 41:353–374. CrossRefPubMedGoogle Scholar
  6. Boucias DG, Cai Y, Sun Y, Lietze VU, Sen R, Raychoudhury R, Scharf ME (2013) The hindgut lumen prokaryotic microbiota of the termite Reticulitermes flavipes and its responses to dietary lignocellulose composition. Mol Ecol 22:1836–1853. CrossRefPubMedGoogle Scholar
  7. Breznak JA, Brill WJ, Mertins JW, Coppel HC (1973) Nitrogen fixation in termites. Nature 244:577–580. CrossRefPubMedGoogle Scholar
  8. Breznak JA, Switzer JM (1986) Acetate synthesis from H2 plus CO2 by termite gut microbes. Appl Environ Microbiol 52:623–630PubMedPubMedCentralGoogle Scholar
  9. Brosius J, Palmer ML, Kennedy PJ, Noller HF (1978) Complete nucleotide sequence of a 16S ribosomal RNA gene from Escherichia coli. Proc Natl Acad Sci 75:4801–4805. doi: Doi
  10. Brune A (2014) Symbiotic digestion of lignocellulose in termite guts. Nat Rev Microbiol 12:168–180. CrossRefPubMedGoogle Scholar
  11. Brune A, Dietrich C (2015) The gut microbiota of termites: digesting the diversity in the light of ecology and evolution. Annu Rev Microbiol 5:607–166. CrossRefGoogle Scholar
  12. Casadevall A, Pirofski LA (2000) Host-pathogen interactions: basic concepts of microbial commensalism, colonization, infection, and disease. Infect Immun 68:6511–6518. CrossRefPubMedPubMedCentralGoogle Scholar
  13. Castle GB (1934) The damp-wood termites of western United States, genus Zootermopsis (formerly, Termopsis). In: Kofoid CA (ed) termites and termite control. University of California Press, Berkeley, California, pp 273–310Google Scholar
  14. Chouvenc T, Efstathion CA, Elliott ML, Su N-Y (2013) Extended disease resistance emerging from the faecal nest of a subterranean termite. Proc R Soc B 280:20131885. CrossRefPubMedGoogle Scholar
  15. Cook TJ, Gold RE (1998) Organization of the symbiotic flagellate community in three castes of the eastern subterranean termite, Reticulitermes flavipes (Isoptera: Rhinotermitidae). Sociobiology 31:25–39Google Scholar
  16. Davey KR (1994) Modelling the combined effect of temperature and pH on the rate coefficient for bacterial growth. Int J Food Microbiol 23:295–303. CrossRefPubMedGoogle Scholar
  17. De Bach PH, Mcomie WA (1939) New disease of termites caused by bacteria. Ann Entomol Soc Am 32:137–146. CrossRefGoogle Scholar
  18. Dimitrov DP (1970) About the fluorescence of prodigiosin isolated from Serratia marcescens. Z Naturforsch 25:762–763. CrossRefGoogle Scholar
  19. Edwards CA, Duerden BI, Read NW (1985) The effects of pH on colonic bacteria grown in continuous culture. J Med Microbiol 19:169–180. CrossRefPubMedGoogle Scholar
  20. Grimont F, Grimont PAD (1984) Serratia. Bergey’s Man Syst Archaea Bact:1–22.
  21. Grimont PAD, Grimont F (1978) The genus Serratia. Annu Rev Microbiol 32:221–248. CrossRefPubMedGoogle Scholar
  22. Holt JA, Lepage M (2000) Termites and soil properties. In: Abe T, Bignell DE, Higashi M (eds) Termites: evolution, sociality, symbioses, ecology. Kluwer Academic Publishers, Dordrecht, pp 389–407CrossRefGoogle Scholar
  23. Hongoh Y, Sharma VK, Prakash T, Noda S, Taylor TD, Kudo T, Sakaki Y, Toyoda A, Hattori M, Ohkuma M (2008) Complete genome of the uncultured termite group 1 bacteria in a single host protist cell. Proc Natl Acad Sci 105:5555–5560. CrossRefPubMedGoogle Scholar
  24. Hughes DP, Pierce NE, Boomsma JJ (2008) Social insect symbionts: evolution in homeostatic fortresses. Trends Ecol Evol 23:672–677. CrossRefPubMedGoogle Scholar
  25. Inagaki T, Matsuura K (2016) Colony-dependent sex differences in protozoan communities of the lower termite Reticulitermes speratus (Isoptera: Rhinotermitidae). Ecol Res 31:749–755. CrossRefGoogle Scholar
  26. Inoue T, Murashima K, Azuma JI et al (1997) Cellulose and xylan utilisation in the lower termite Reticulitermes speratus. J Insect Physiol 43:235–242. CrossRefPubMedGoogle Scholar
  27. Ishii S, Kishi M, Yamagami K et al (2012) The use of mammalian cultured cells loaded with a fluorescent dye shows specific membrane penetration of undissociated acetic acid. Biosci Biotechnol Biochem 76:523–529. CrossRefPubMedGoogle Scholar
  28. Ivanov II, Atarashi K, Manel N, Brodie EL, Shima T, Karaoz U, Wei D, Goldfarb KC, Santee CA, Lynch SV, Tanoue T, Imaoka A, Itoh K, Takeda K, Umesaki Y, Honda K, Littman DR (2009) Induction of intestinal Th17 cells by segmented filamentous bacteria. Cell 139:485–498. CrossRefPubMedPubMedCentralGoogle Scholar
  29. Klainer AS, Beisel WR (1969) Opportunistic infection: a review. Am J Med Sci 258:431–456CrossRefGoogle Scholar
  30. Leadbetter JR, Schmidt TM, Graber JR, Breznak JA (1999) Acetogenesis from H2 plus CO2 by spirochetes from termite guts. Science 283:686–689. CrossRefPubMedGoogle Scholar
  31. Lee KE, Wood TG (1971) Termites and soils. Academic Press, LondonGoogle Scholar
  32. Lewis JL, Forschler BT (2004) Protist communities from four castes and three species of Reticulitermes (Isoptera: Rhinotermitidae). Ann Entomol Soc Am 97:1242–1251.[1242:pcffca];2Google Scholar
  33. Lo Pinto M, Varrica G, Agrò A (2016) Temporal variations in symbiotic hindgut protist community of the subterranean termite Reticulitermes lucifugus Rossi in Sicily. Insect Soc 63:143–145. CrossRefGoogle Scholar
  34. Mikaelyan A, Thompson CL, Hofer MJ, Brune A (2016) The deterministic assembly of complex bacterial communities in guts of germ-free cockroaches. Appl Environ Microbiol 82:1256–1263. CrossRefPubMedPubMedCentralGoogle Scholar
  35. Moran NA, McCutcheon JP, Nakabachi A (2008) Genomics and evolution of heritable bacterial symbionts. Annu Rev Genet 42:165–190. CrossRefPubMedGoogle Scholar
  36. Nalepa CA (1991) Ancestral transfer of symbionts between cockroaches and termites: an unlikely scenario. Proc R Soc B 246:185–189. CrossRefPubMedGoogle Scholar
  37. Noda F, Hayashi K (1980) Antagonism betseen osmophilic lactic acid bacteria and yeasts in brine fermentation of soy sauce. Appl Environ Microbiol 40:452–457PubMedPubMedCentralGoogle Scholar
  38. Ohkuma M, Brune A (2011) Diversity, structure, and evolution of the termite gut microbial community. In: Bignell DE, Roisin Y, Lo N (eds) Biology of termites: a modern synthesis. Springer, Dordrecht, pp 413–438Google Scholar
  39. Osbrink WLA, Williams KS, Connick WJ, Wright MS, Lax AR (2001) Virulence of bacteria associated with the Formosan subterranean termite (Isoptera: Rhinotermitidae) in New Orleans, LA. Biol Control 30:443–448. CrossRefGoogle Scholar
  40. Otti O, Tragust S, Feldhaar H (2014) Unifying external and internal immune defences. Trends Ecol Evol 29:625–634. CrossRefPubMedGoogle Scholar
  41. Peterson BF, Scharf ME (2016a) Metatranscriptome analysis reveals bacterial symbiont contributions to lower termite physiology and potential immune functions. BMC Genomics 17:772. CrossRefPubMedPubMedCentralGoogle Scholar
  42. Peterson BF, Scharf ME (2016b) Lower termite associations with microbes: synergy, protection, and interplay. Front Microbiol 7:1–7. CrossRefGoogle Scholar
  43. Poindexter HA, Washington DT (1974) Microbial opportunism in clinical medicine. J Natl Med Assoc 66:284–291PubMedPubMedCentralGoogle Scholar
  44. Potrikus CJ, Breznak JA (1981) Gut bacteria recycle uric acid nitrogen in termites: a strategy for nutrient conservation. Proc Natl Acad Sci 78:4601–4605. CrossRefPubMedGoogle Scholar
  45. R Core Team (2017) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL
  46. Rosengaus RB, Moustakas JE, Calleri DV, Traniello JFA (2003) Nesting ecology and cuticular microbial loads in dampwood (Zootermopsis angusticollis) and drywood termites (Incisitermes minor, I. schwarzi, Cryptotermes cavifrons). J Insect Sci 3:1–6. CrossRefGoogle Scholar
  47. Rosengaus RB, Schultheis KF, Yalonetskaya A, Bulmer MS, DuComb WS, Benson RW, Thottam JP, Godoy-Carter V (2014) Symbiont-derived β-1,3-glucanases in a social insect: mutualism beyond nutrition. Front Microbiol 5:1–11. CrossRefGoogle Scholar
  48. Rousk J, Brookes PC, Bååth E (2009) Contrasting soil pH effects on fungal and bacterial growth suggest functional redundancy in carbon mineralization. Appl Environ Microbiol 75:1589–1596. CrossRefPubMedPubMedCentralGoogle Scholar
  49. Scharf ME (2015) Omic research in termites: an overview and a roadmap. Front Genet 6:76. CrossRefPubMedPubMedCentralGoogle Scholar
  50. Scharf ME, Cai Y, Sun Y, Sen R, Raychoudhury R, Boucias DG (2017) A meta-analysis testing eusocial co-option theories in termite gut physiology and symbiosis. Commun Integr Biol 10:1–13. CrossRefGoogle Scholar
  51. Schmid-Hempel P (1998) Parasites in social insects. Princeton University PressGoogle Scholar
  52. Scott KJ (1972) Obligate parasitism by phytopathogenic fungi. Biol Rev 47:537–572. CrossRefGoogle Scholar
  53. Sen R, Raychoudhury R, Cai Y, Sun Y, Lietze VU, Peterson BF, Scharf ME, Boucias DG (2015) Molecular signatures of nicotinoid-pathogen synergy in the termite gut. PLoS One 10:1–20. CrossRefGoogle Scholar
  54. Sharma M, Modi DR, Saxena M (2014) Role of lactic acid bacteria as probiotics in health and disease. La Prensa Medica Argentina 100(4).
  55. Shimada K, Lo N, Kitade O, Wakui A, Maekawa K (2013) Cellulolytic protist numbers rise and fall dramatically in termite queens and kings during colony foundation. Eukaryot Cell 12:545–550. CrossRefPubMedPubMedCentralGoogle Scholar
  56. Stecher B, Hardt WD (2008) The role of microbiota in infectious disease. Trends Microbiol 16:107–114. CrossRefPubMedGoogle Scholar
  57. Stecher B, Hardt WD (2011) Mechanisms controlling pathogen colonization of the gut. Curr Opin Microbiol 14:82–91. CrossRefPubMedGoogle Scholar
  58. Veivers PC, O’Brien RW, Slaytor M (1982) Role of bacteria in maintaining the redox potential in the hindgut of termites and preventing entry of foreign bacteria. J Insect Physiol 28:947–951. CrossRefGoogle Scholar
  59. Wilson K (1997) Preparation of genomic DNA from bacteria. In: Ausubel FM, Brent R, Kingston RE et al (eds) Current protocols in molecular biology. John Wiley & Sons, Inc., Hoboken, NJ, USA, p 2.4.1–2, vol 4, p 5Google Scholar
  60. Wood BJ (1992) The lactic acid bacteria volume 1. Springer US, Boston, MACrossRefGoogle Scholar
  61. Zhang CX, Yang SY, Xu MX, Sun J, Liu H, Liu JR, Liu H, Kan F, Sun J, Lai R, Zhang KY (2009) Serratia nematodiphila sp. nov., associated symbiotically with the entomopathogenic nematode Heterorhabditidoides chongmingensis (Rhabditida: Rhabditidae). Int J Syst Evol Microbiol 59:1603–1608. CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Laboratory of Insect Ecology, Graduate School of AgricultureKyoto UniversityKyotoJapan

Personalised recommendations