The Science of Nature

, 105:54 | Cite as

Meta-networks for the study of biogeographical traits in ecological networks: the Mexican hummingbird-plant assemblage

  • Ana M. Martín GonzálezEmail author
  • Juan Francisco Ornelas
  • Bo Dalsgaard
  • Ubaldo Márquez-Luna
  • Carlos Lara
Original Paper


Recent studies on ecological networks have quantified the contribution of ecological, historical, and evolutionary factors on the structure of local communities of interacting species. However, the influence of species’ biogeographical traits, such as migratory habits or phylogeographical history, on ecological networks is poorly understood. Meta-networks, i.e., networks that cover large spatial extensions and include species not co-occurring locally, enable us to investigate mechanisms that operate at larger spatial scales such as migratory patterns or phylogeographical distributions, as well as indirect relationships among species through shared partners. Using a meta-network of hummingbird-plant interaction across Mexico, we illustrate the usefulness of this approach by investigating (1) how biogeographical and morphological factors associate with observed interactions and (2) how species-specific biogeographical characteristics associate with species’ network roles. Our results show that all studied hummingbird and plant species in the meta-network were interrelated, either directly or through shared partners. The meta-network was structured into modules, resulting from hummingbirds and plants interacting preferentially with subsets of species, which differed in biogeographical, and, to a lesser extent, morphological traits. Furthermore, migrants and hummingbirds from Nearctic, Transition, and widespread regions had a higher topological importance in the meta-network. Our study illustrates how meta-networks may contribute to our current knowledge on species’ biogeographical traits and biotic interactions, providing a perspective complementary to local-scale networks.


Biotic interactions Migration Modularity Morphology Phylogeny Pollination 



We thank Sven Thatje, Tobias Roth, and three anonymous referees for helpful comments on a previous version of the manuscript. AMMG is supported through a Marie Skłodowska-Curie Individual Fellowship (H2020-MSCA-IF-2015-704409). AMMG and BD thank the Danish National Research Foundation for its support of the Center for Macroecology, Evolution and Climate (Grant number DNRF96). CL thanks the Secretaría de Investigación of Universidad Autónoma de Tlaxcala for the scholarship awarded. Verónica Mendiola-Islas provided logistical support during the revision of hummingbird-plant networks.

Supplementary material

114_2018_1578_MOESM1_ESM.doc (316 kb)
ESM 1 (DOC 315 kb)


  1. Abrahamczyk S, Kessler M (2014) Morphological and behavioural adaptations to feed on nectar: how feeding ecology determines the diversity and composition of hummingbird assemblages. J Ornithol 156:333–347CrossRefGoogle Scholar
  2. Araújo MB, Luoto M (2007) The importance of biotic interactions for modelling species distributions under climate change. Glob Ecol Biogeogr 16:743–753CrossRefGoogle Scholar
  3. Araujo AC, Martín González AM et al (2018) Spatial distance and climate determine modularity in a cross-biomes plant-hummingbird interaction network in Brazil. J Biogeogr 45:1846–1858CrossRefGoogle Scholar
  4. Arizmendi MC, Berlanga H (2014) Colibríes de México y Norteamérica/Hummingbirds of Mexico and North America. CONABIO MexicoGoogle Scholar
  5. Barber MJ (2007) Modularity and community detection in bipartite networks. Phys Rev E76:066102Google Scholar
  6. Bascompte J, Jordano P, Melián CJ, Olesen JM (2003) The nested assembly of plant–animal mutualistic networks. Proc Natl Acad Sci 100:9383–9387CrossRefGoogle Scholar
  7. Bleiweiss R (1998) Origin of hummingbird faunas. Biol J Linn Soc 65:77–97CrossRefGoogle Scholar
  8. Brown JH, Bowers MA (1985) Community organization in hummingbirds: relationships between morphology and ecology. Auk 102:251–269CrossRefGoogle Scholar
  9. Cavender-Bares J, Kozak KH, Fine PV, Kembel SW (2009) The merging of community ecology and phylogenetic biology. Ecol Lett 12:693–715CrossRefGoogle Scholar
  10. Chacoff N, Resasco J, Vázquez DP (2017) Interaction frequency, network position, and the temporal persistence of interactions in a plant-pollinator network. Ecology 99:21–28CrossRefGoogle Scholar
  11. Dalsgaard B, Martín González AM, Olesen JM, Ollerton J, Timmermann A, Andersen LH, Tossas AG (2009) Plant-hummingbird interactions in the West Indies: floral specialisation gradients associated with environment and hummingbird size. Oecologia 159:757–766CrossRefGoogle Scholar
  12. Dalsgaard B, Magård E et al (2011) Specialization in plant-hummingbird networks is associated with species richness, contemporary precipitation and quaternary climate-change velocity. PLoS One 6:e25891CrossRefGoogle Scholar
  13. Dalsgaard B, Kennedy JD et al (2018) Trait evolution, resource specialisation and vulnerability to plant extinctions among Antillean hummingbirds. Proc R Soc B 285:20172754CrossRefGoogle Scholar
  14. Dormann CF (2012) Visualising bipartite networks and calculating some (ecological) indices. Package "bipartite"Google Scholar
  15. Emer C, Galetti M, Pizo MA, Guimarães PR, Moraes S, Piratelli A, Jordano P (2018) Seed-dispersal interactions in fragmented landscapes – a metanetwork approach. Ecol Lett 21:484–493CrossRefGoogle Scholar
  16. Escalante P, Navarro AG, Peterson AT (1993) A geographic, historical and ecological analysis of land bird diversity in Mexico. In: Ramamoorthy TP, Bye R, Fa J, Lot A (eds) Biological diversity in Mexico: origins and distributions. Oxford University Press, New York, pp 281–307Google Scholar
  17. Grant KA, Grant V (1968) Hummingbirds and their flowers. Columbia University PressGoogle Scholar
  18. Hayfield T, Racine JS (2008) Nonparametric econometrics: the np package. Journal of statistical software 27(5). URL
  19. Hayfield T, Racine JS (2017) Nonparametric kernel smoothing methods for mixed data types. Package "np"Google Scholar
  20. Halffter G (1987) Biogeography of the montane entomofauna of Mexico and Central America. Annu Rev Entomol 32:95–114CrossRefGoogle Scholar
  21. Heilmann-Clausen J, Maruyama PK, Bruun HH, Dimitrov D, Læssøe T, Frøslec TG, Dalsgaard B (2017) Citizen science data reveal ecological, historical and evolutionary factors shaping interactions between woody hosts and wood-inhabiting fungi. New Phytol 212:1072–1082CrossRefGoogle Scholar
  22. Kantsa A, Raguso RA, Dyer AG, Olesen JM, Tscheulin T, Petanidou T (2018) Disentangling the role of floral sensory stimuli in pollination networks. Nature Comm 9:1041CrossRefGoogle Scholar
  23. Lara C (2006) Temporal dynamics of flower use by hummingbirds in a highland temperate forest in Mexico. EcoScience 13:23–29CrossRefGoogle Scholar
  24. Licona-Vera Y, Ornelas JF (2014) Genetic, ecological and morphological divergence between populations of the endangered Mexican Sheartail hummingbird (Doricha eliza). PLoS ONE 9:e101870CrossRefGoogle Scholar
  25. Licona-Vera Y, Ornelas JF (2017) The conquering of North America: dated phylogenetic and biogeographic inference of migratory behavior in bee hummingbirds. BMC Evol Biol 17:126CrossRefGoogle Scholar
  26. Luna-Vega I, Morrone J, Alcántara Ayala O, Ornagista DE (2001) Biogeographical affinities among Neotropical cloud forests. Plant Syst Evol 228:229–239CrossRefGoogle Scholar
  27. Maglianesi MA, Blüthgen, Böhning-Gaese K, Schleuning M (2014) Morphological traits determine specialization and resource use in plant-hummingbird networks in the neotropics. Ecology 95:3325–3334CrossRefGoogle Scholar
  28. Maglianesi MA, Blüthgen, Böhning-Gaese K, Schleuning M (2015) Functional structure and specialization in three tropical plant-hummingbird interaction networks across an elevational gradient in Costa Rica. Ecography 38:1119–1128CrossRefGoogle Scholar
  29. Malpica A, Ornelas JF (2014) Postglacial northward expansion and genetic differentiation between migratory and sedentary populations of the broad-tailed hummingbird (Selasphorus platycercus). Mol Ecol 23:435–452CrossRefGoogle Scholar
  30. Marquitti FMD, Guimarães PR Jr, Pires MM, Bittencourt LF (2014) MODULAR: software for the autonomous computation of modularity in large network sets. Ecography 37:221–224CrossRefGoogle Scholar
  31. Martín González AM, Allesina S, Rodrigo A, Bosch J (2012) Drivers of compartmentalization in pollination networks. Oikos 121:2001–2013CrossRefGoogle Scholar
  32. Martín González AM, Dalsgaard B et al (2015) Themacroecology of phylogenetically structured hummingbird-plant networks. Glob Ecol Biogeogr 24:1212–1224CrossRefGoogle Scholar
  33. Maruyama PK, Vizentin-Bugoni J, Oliveira GM, Oliveira PE, Dalsgaard B (2014) Morphological and spatio-temporal mismatches shape a Neotropical savanna plant-hummingbird network. Biotropica 46:740–747CrossRefGoogle Scholar
  34. McGuire JA, Witt CC, Remsen JV Jr, Corl A, Rabosky DL, Altshuler DL, Dudley R (2014) Molecular phylogenetics and the diversification of hummingbirds. Curr Biol 24:910–916CrossRefGoogle Scholar
  35. Morrone JJ (2010) Fundamental biogeographic patterns across the Mexican Transition Zone: an evolutionary approach. Ecography 33:355–361Google Scholar
  36. Morrone JJ, Márquez J (2001) Halffter’s Mexican Transition Zone, beetle generalised tracks, and geographical homology. J Biogeog 28:635–650CrossRefGoogle Scholar
  37. Morrone JJ, Escalante T, Rodríguez-Tapia G (2017) Mexican biogeographic provinces: map and shapefiles. Zootaxa 4277:277CrossRefGoogle Scholar
  38. Navarro SAG, Townsend Peterson A, Gordillo-Martínez A (2002) A Mexican case study on a centralised database from world natural history museums. Data Sci 1:45–53CrossRefGoogle Scholar
  39. Oksanen J (2017) Vegan: an introduction to ordination. Package "vegan"Google Scholar
  40. Olesen JM, Bascompte J, Dupont YL, Jordano P (2007) The modularity of pollination networks. Proc Natl Acad Sci USA 104:19891–19896CrossRefGoogle Scholar
  41. Ornelas JF, Lara C (2015) Differential response to color task on resident and migratory hummingbirds: a field test. Ethol Ecol & Evol 27:257–378CrossRefGoogle Scholar
  42. Ornelas JF, González C, Espinosa delos Monteros A, Rodríguez-Gómez F, García-Feria LM (2014) In and out of Mesoamerica: temporal divergence of Amazilia hummingbirds pre-dates the orthodox account of the completion of the Isthmus of Panama. J Biogeogr 41:168–181CrossRefGoogle Scholar
  43. Ornelas JF, González de León S, González C, Licona-Vera Y, Ortiz-Rodriguez AE, Rodríguez-Gómez F (2015) Comparative palaeodistribution of eight hummingbird species reveal a link between genetic diversity and quaternary habitat and climate stability in Mexico. Folia Zool 64:245–258CrossRefGoogle Scholar
  44. Poisot T, Stouffer DB, Gravel D (2015) Beyond species: why ecological interactions. Oikos 124:243–251CrossRefGoogle Scholar
  45. Rech AR, Dalsgaard B, Sandel B, Sonne J, Svenning JC, Holmes N, Ollerton J (2016) The macroecology of animal versus wind pollination: ecological factors are more important than historical climate stability. Plant Ecol & Div 9:253–262CrossRefGoogle Scholar
  46. Ricklefs RE (1987) Community diversity: relative roles of local and regional processes. Science 235:167–171CrossRefGoogle Scholar
  47. Rodríguez-Gómez F, Gutiérrez-Rodríguez C, Ornelas JF (2013) Genetic, phenotypic and ecological divergence with gene flow at the Isthmus of Tehuantepec: the case of the azure-crowned hummingbird (Amazilia cyanocephala). J Biogeogr 40:1360–1373CrossRefGoogle Scholar
  48. Rzedowski J (1965) Relaciones geográficas y posibles orıgenes de la flora de México. Bol Soc Bot Mex 29:121–177Google Scholar
  49. Rzedowski J (1992) Diversidad y orígenes de la flora fanerogámica de México. Ciencias 5:47–56Google Scholar
  50. Stouffer DB, Bascompte J (2011) Compartmentalization increases food-web persistence. Proc Natl Acad Sci USA 108:3648–3652CrossRefGoogle Scholar
  51. Sonne J, Martín González AM et al (2016) High proportion of smaller ranged hummingbird species coincides with ecological specialization across the Americas. Proc R Soc B 283:20152512CrossRefGoogle Scholar
  52. Stiles FG (1978) Ecological and evolutionary implications of bird pollination. Am Zool 18:715–727CrossRefGoogle Scholar
  53. Stiles FG (1981) Geographical aspects of bird-flower coevolution, with particular reference to Central America. Ann Miss Bot Gard 68:323–351CrossRefGoogle Scholar
  54. Thuiller W, Münkemüller T, Lavergne S, Mouillot D, Mouquet N, Schiffers K, Gravel D (2013) A roadmap for integrating eco-evolutionary processes into biodiversity models. Ecol Lett 16:94–105CrossRefGoogle Scholar
  55. Tylianakis JM, Laliberté E, Nielsen A, Bascompte J (2010) Conservation of species interaction networks. Biol Conserv 143:2270–2279CrossRefGoogle Scholar
  56. Vázquez DP, Blüthgen N, Cagnolo L, Chacoff NP (2009) Uniting pattern and process in plant–animal mutualistic networks: a review. Annals Bot 103:1445–1457CrossRefGoogle Scholar
  57. Vizentin-Bugoni J, Maruyama PK, Sazima M (2014) Processes entangling interactions in communities: forbidden links are more important than abundance in a hummingbird–plant network. Proc Royal Soc B Biol Sci 281:20132397CrossRefGoogle Scholar
  58. Weinstein BG, Graham CH, Parra JL (2017) The role of environment, dispersal and competition in explaining reduced co-occurrence among related species. PLoS One 12:e0185493CrossRefGoogle Scholar
  59. Zanata T, Dalsgaard B et al (2017) Global patterns of interaction specialization in bird-flower networks. J Biogeogr 44:1891–1910CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Center for Macroecology, Evolution and Climate, Natural History Museum of DenmarkUniversity of CopenhagenCopenhagen ØDenmark
  2. 2.Departamento de Biología EvolutivaInstituto de Ecología, A.C. (INECOL)XalapaMexico
  3. 3.Doctorado en Ciencias Biológicas y de la SaludUniversidad Autónoma Metropolitana-IztapalapaIztapalapaMexico
  4. 4.Centro de Investigación en Ciencias BiológicasUniversidad Autónoma de TlaxcalaTlaxcalaMexico

Personalised recommendations