Advertisement

Naturwissenschaften

, Volume 100, Issue 8, pp 739–747 | Cite as

Volcanic mercury in Pinus canariensis

  • José Antonio Rodríguez MartínEmail author
  • Nikos Nanos
  • José Carlos Miranda
  • Gregoria Carbonell
  • Luis Gil
Original Paper

Abstract

Mercury (Hg) is a toxic element that is emitted to the atmosphere by both human activities and natural processes. Volcanic emissions are considered a natural source of mercury in the environment. In some cases, tree ring records taken close to volcanoes and their relation to volcanic activity over time are contradictory. In 1949, the Hoyo Negro volcano (La Palma-Canary Islands) produced significant pyroclastic flows that damaged the nearby stand of Pinus canariensis. Recently, 60 years after the eruption, we assessed mercury concentrations in the stem of a pine which survived volcano formation, located at a distance of 50 m from the crater. We show that Hg content in a wound caused by pyroclastic impacts (22.3 μg kg−1) is an order of magnitude higher than the Hg concentrations measured in the xylem before and after the eruption (2.3 μg kg−1). Thus, mercury emissions originating from the eruption remained only as a mark—in pyroclastic wounds—and can be considered a sporadic and very high mercury input that did not affect the overall Hg input in the xylem. In addition, mercury contents recorded in the phloem (9.5 μg kg−1) and bark (6.0 μg kg−1) suggest that mercury shifts towards non-living tissues of the pine, an aspect that can be related to detoxification in volcanism-adapted species.

Keywords

Mercury Volcano La Palma Island Tree rings Bioindicator 

Notes

Acknowledgments

We are grateful for the financial assistance provided by the Spanish Ministry of Innovation through Projects AGL2009-10606 and JC2010-0109. We are also grateful for Project CGL2009-14686-C02-02. The authors thank Claus-Dieter Hillenbrand, Associate Editor of Naturwissenschaften, for the improvements and corrections made in this manuscript.

Supplementary material

Video

Damage caused by the San Juan eruption on La Palma Island, movie footage: “La Palma en la Memoria 1949”. The San Juan eruption that formed the Hoyo Negro volcano in June 1949, and details of damage to the pine grove. This video (RTVE), recorded a few days after the eruption, shows the effect of the pyroclastic flows on pine trees. (MPG 15406 kb)

References

  1. Adriano DC (2001) Trace elements in terrestrial environments: biogeochemistry, bioavailability, and risks of metals. Springer, New YorkCrossRefGoogle Scholar
  2. Aelion CM, Davis HT, McDermott S, Lawson AB (2009) Soil metal concentrations and toxicity: associations with distances to industrial facilities and implications for human health. Sci Total Environ 407(7):2216–2223. doi: 10.1016/j.scitotenv.2008.11.033 PubMedCrossRefGoogle Scholar
  3. Bagnato E, Aiuppa A, Parello F, Allard P, Shinohara H, Liuzzo M, Giudice G (2011) New clues on the contribution of Earth’s volcanism to the global mercury cycle. Bull Volcanol 73(5):497–510. doi: 10.1007/s00445-010-0419-y CrossRefGoogle Scholar
  4. Bargagli R, Barghigiani C, Maserti BE (1986) Mercury in vegetation of the Mount Amiata area (Italy). Chemosphere 15(8):1035–1042. doi: 10.1016/0045-6535(86)90555-2 CrossRefGoogle Scholar
  5. Barghigiani C, Bargagli R, Gioffré D (1988) Mercury in the environment of the Mt. Etna volcanic area. Environ Technol Lett 9(3):239–244. doi: 10.1080/09593338809384561 CrossRefGoogle Scholar
  6. Barghigiani C, Ristori T, Bauleo R (1991) Pinus as an atmospheric Hg biomonitor. Environ Technol 12(12):1175–1181. doi: 10.1080/09593339109385118 CrossRefGoogle Scholar
  7. Bishop K, Lee Y-H, Munthe J, Dambrine E (1998) Xylem sap as a pathway for total mercury and methylmercury transport from soils to tree canopy in the boreal forest. Biogeochemistry 40(2):101–113. doi: 10.1023/a:1005983932240 CrossRefGoogle Scholar
  8. Climent J, Chambel MR, Gil L, Pardos JA (2003) Vertical heartwood variation patterns and prediction of heartwood volume in Pinus canariensis Sm. For Ecol Manag 174(1–3):203–211. doi: 10.1016/s0378-1127(02)00023-3 CrossRefGoogle Scholar
  9. Engle MA, Sexauer Gustin M, Lindberg SE, Gertler AW, Ariya PA (2005) The influence of ozone on atmospheric emissions of gaseous elemental mercury and reactive gaseous mercury from substrates. Atmos Environ 39(39):7506–7517. doi: 10.1016/j.atmosenv.2005.07.069 CrossRefGoogle Scholar
  10. Engle MA, Sexauer Gustin M, Johnson DW, Murphy JF, Miller WW, Walker RF, Wright J, Markee M (2006) Mercury distribution in two Sierran forest and one desert sagebrush steppe ecosystems and the effects of fire. Sci Total Environ 367(1):222–233. doi: 10.1016/j.scitotenv.2005.11.025 PubMedCrossRefGoogle Scholar
  11. EPA (1998) Mercury in soils and solutions by thermal decomposition amalgamation and atomic spectrophotometry. Method 7473. US EPAGoogle Scholar
  12. Fitzgerald WF, Engstrom DR, Mason RP, Nater EA (1998) The case for atmospheric mercury contamination in remote areas. Environ Sci Technol 32(1):1–7. doi: 10.1021/es970284w CrossRefGoogle Scholar
  13. Fleck JA, Grigal DF, Nater EA (1999) Mercury uptake by trees: an observational experiment. Water Air Soil Pollut 115(1):513–523. doi: 10.1023/a:1005194608598 CrossRefGoogle Scholar
  14. Friedli HR, Radke LF, Payne NJ, McRae DJ, Lynham TJ, Blake TW (2007) Mercury in vegetation and organic soil at an upland boreal forest site in Prince Albert National Park, Saskatchewan, Canada. Journal of Geophysical Research: Biogeosciences 112 (G01004). doi: 10.1029/2005jg000061
  15. García-Talavera F, Sánchez-Pinto L, Socorro S (1995) Vegetales fósiles en el complejo traquítico-sienítico de Gran Canaria. Rev Acad Canaria Cienc 7:77–91Google Scholar
  16. Génova Fuster MM, Santana C (2006) Crecimiento y longevidad en el pino canario ("Pinus canriensis" Smith). Investig Agrar Sist Recur For 15(3):296–307Google Scholar
  17. Gil C, Ramos-Miras J, Roca-Pérez L, Boluda R (2010) Determination and assessment of mercury content in calcareous soils. Chemosphere 78(4):409–415. doi: 10.1016/j.chemosphere.2009.11.001 PubMedCrossRefGoogle Scholar
  18. Grigal DF (2003) Mercury sequestration in forests and peatlands. J Environ Qual 32(2):393–405. doi: 10.2134/jeq2003.3930 PubMedGoogle Scholar
  19. IPCS (1986) Environmental health criteria, vol International Program on Chemical Safety. World Health OrganizationGoogle Scholar
  20. Jitaru P, Gabrielli P, Marteel A, Plane JMC, Planchon FAM, Gauchard PA, Ferrari CP, Boutron CF, Adams FC, Hong S (2009) Atmospheric depletion of mercury over Antarctica during glacial periods. Nat Geosci 2:505–508CrossRefGoogle Scholar
  21. Jonsson S, Gunnarson B, Criado C (2002) Drought is the major limiting factor for tree-ring growth of high-altitude Canary Island pines on Tenerife. Geogr Ann A Phys Geogr 84(1):51–71. doi: 10.1111/j.0435-3676.2002.00161.x CrossRefGoogle Scholar
  22. Klügel A, Schmincke HU, White JDL, Hoernle KA (1999) Chronology and volcanology of the 1949 multi-vent rift-zone eruption on La Palma (Canary Islands). J Volcanol Geotherm Res 94(1–4):267–282. doi: 10.1016/s0377-0273(99)00107-9 CrossRefGoogle Scholar
  23. Krabbenhoft D, Engstrom D, Gilmour C, Harris R, Hurley J, Mason R (2007) Monitoring and evaluating trends in sediment and water indicators. In: Harris R, Krabbenhoft D, Mason R, Murray MW, Reash R, Saltman T (eds) Ecosystem responses to mercury contamination: indicators of change. Taylor and Francis Group, Boca Raton, pp 47–86Google Scholar
  24. Lacerda LD, de Souza M, Ribeiro MG (2004) The effects of land use change on mercury distribution in soils of Alta Floresta, Southern Amazon. Environ Pollut 129(2):247–255. doi: 10.1016/j.envpol.2003.10.013 PubMedCrossRefGoogle Scholar
  25. Lamborg CH, Fitzgerald WF, O’Donnell J, Torgersen T (2002) A non-steady-state compartmental model of global-scale mercury biogeochemistry with interhemispheric atmospheric gradients. Geochim Cosmochim Acta 66(7):1105–1118. doi: 10.1016/s0016-7037(01)00841-9 CrossRefGoogle Scholar
  26. Lindqvist O (1991) Mercury in the Swedish environment: recent research on causes, consequences and corrective methods. Water Air Soil Pollut 55(1–2):1–261Google Scholar
  27. Liu R, Wang Q, Lu X, Fang F, Wang Y (2003) Distribution and speciation of mercury in the peat bog of Xiaoxing'an Mountain, northeastern China. Environ Pollut 124(1):39–46. doi: 10.1016/s0269-7491(02)00432-3 PubMedCrossRefGoogle Scholar
  28. Mae Sexauer G (2003) Are mercury emissions from geologic sources significant? A status report. Sci Total Environ 304(1–3):153–167. doi: 10.1016/s0048-9697(02)00565-x Google Scholar
  29. Martin RS, Mather TA, Pyle DM, Day JA, Witt MLI, Collins SJ, Hilton RG (2010) Major and trace element distributions around active volcanic vents determined by analyses of grasses: implications for element cycling and bio-monitoring. Bull Volcanol 72(8):1009–1020. doi: 10.1007/s00445-010-0374-7 CrossRefGoogle Scholar
  30. Martin RS, Witt MLI, Sawyer GM, Thomas HE, Watt SFL, Bagnato E, Calabrese S, Aiuppa A, Delmelle P, Pyle DM, Mather TA (2012) Bioindication of volcanic mercury (Hg) deposition around Mt. Etna (Sicily). Chem Geol 310–311:12–22. doi: 10.1016/j.chemgeo.2012.03.022 CrossRefGoogle Scholar
  31. Mason RP, Fitzgerald WF, Morel FMM (1994) The biogeochemical cycling of elemental mercury: anthropogenic influences. Geochim Cosmochim Acta 58(15):3191–3198. doi: 10.1016/0016-7037(94)90046-9 CrossRefGoogle Scholar
  32. Nanos N, Miranda J, González-Doncel I, Gonzalo J, Martín JR, Gil L (2011) A pine species surviving after volcanic eruptions. In: Rigolot E (ed) MEDPINE4: 4th International Conference on Mediterranean pines, AvignonGoogle Scholar
  33. Navarro M, López H, Sánchez M, López MC (1993) The effect of industrial pollution on mercury levels in water, soil, and sludge in the coastal area of Motril, Southeast Spain. Arch Environ Contam Toxicol 24(1):11–15. doi: 10.1007/bf01061083 PubMedCrossRefGoogle Scholar
  34. Nóvoa-Muñoz JC, Pontevedra-Pombal X, Martínez-Cortizas A, García-Rodeja Gayoso E (2008) Mercury accumulation in upland acid forest ecosystems nearby a coal-fired power-plant in Southwest Europe (Galicia, NW Spain). Sci Total Environ 394(2–3):303–312. doi: 10.1016/j.scitotenv.2008.01.044 PubMedCrossRefGoogle Scholar
  35. Nriagu JO (1989) A global assessment of natural sources of atmospheric trace metals. Nature 338(6210):47–49CrossRefGoogle Scholar
  36. Nriagu J, Becker C (2003) Volcanic emissions of mercury to the atmosphere: global and regional inventories. Sci Total Environ 304(1–3):3–12. doi: 10.1016/s0048-9697(02)00552-1 PubMedCrossRefGoogle Scholar
  37. Nriagu JO, Pacyna JM (1988) Quantitative assessment of worldwide contamination of air, water and soils by trace metals. Nature 333(6169):134–139PubMedCrossRefGoogle Scholar
  38. Obrist D, Johnson D, Lindberg S (2009) Mercury concentrations and pools in four Sierra Nevada forest sites, and relationships to organic carbon and nitrogen. Biogeosci Discuss 6:1777–1809CrossRefGoogle Scholar
  39. Padilla KL, Anderson KA (2002) Trace element concentration in tree-rings biomonitoring centuries of environmental change. Chemosphere 49(6):575–585. doi: 10.1016/s0045-6535(02)00402-2 PubMedCrossRefGoogle Scholar
  40. Pant P, Allen M (2007) Interaction of soil and mercury as a function of soil organic carbon: some field evidence. Bull Environ Contam Toxicol 78(6):539–542. doi: 10.1007/s00128-007-9186-7 PubMedCrossRefGoogle Scholar
  41. Patra M, Sharma A (2000) Mercury toxicity in plants. Bot Rev 66(3):379–422CrossRefGoogle Scholar
  42. Pirrone N, Keeler GJ, Nriagu JO (1996) Regional differences in worldwide emissions of mercury to the atmosphere. Atmos Environ 30(17):2981–2987. doi: 10.1016/1352-2310(95)00498-x CrossRefGoogle Scholar
  43. Pyle DM, Mather TA (2003) The importance of volcanic emissions for the global atmospheric mercury cycle. Atmos Environ 37(36):5115–5124. doi: 10.1016/j.atmosenv.2003.07.011 CrossRefGoogle Scholar
  44. Rodríguez Martín J, Vazquez de la Cueva A, Grau Corbí J, Martínez Alonso C, López Arias M (2009a) Factors controlling the spatial variability of mercury distribution in Spanish topsoil. Soil Sediment Contam 18(1):30–42CrossRefGoogle Scholar
  45. Rodríguez Martín JA, López Arias M, Grau Corbí JM (2009b) Metales pesados, materia organica y otros parametros de los suelos agricolas y de pastos de España. Ministerio de medio ambiente y medio rural y marino/Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, MadridGoogle Scholar
  46. Rodríguez Martín JA, Carbonell G, Nanos N, Gutiérrez C (2013) Source identification of soil mercury in the Spanish islands. Arch Environ Contam Toxicol 64:171–179PubMedCrossRefGoogle Scholar
  47. Salminen R, Plant J, Reeder S (2005) Geochemical atlas of Europe. Part 1: Background information, methodology and maps. Geological Survey of Finland. http://library.wur.nl/WebQuery/biola/lang/1914679
  48. San Miguel de la Cámara M, Fúster Casas J, Martel Y (1952) Las erupciones y materiales arrojados por ellas en la Isla de La Palma—Junio-Julio de 1949. Bull Volcanol 12(1):145–163CrossRefGoogle Scholar
  49. Schroeder WH, Munthe J (1998) Atmospheric mercury—an overview. Atmos Environ 32(5):809–822. doi: 10.1016/s1352-2310(97)00293-8 CrossRefGoogle Scholar
  50. Schuster PF, Krabbenhoft DP, Naftz DL, Cecil LD, Olson ML, Dewild JF, Susong DD, Green JR, Abbott ML (2002) Atmospheric mercury deposition during the last 270 years: a glacial ice core record of natural and anthropogenic sources. Environ Sci Technol 36(11):2303–2310. doi: 10.1021/es0157503 PubMedCrossRefGoogle Scholar
  51. Selin NE (2009) Global biogeochemical cycling of mercury: a review. Annu Rev Environ Resour 34(1):43–63. doi: 10.1146/annurev.environ.051308.084314 CrossRefGoogle Scholar
  52. Siegel BZ, Siegel SM (1982) Mercury content of equisetum plants around Mount St. Helens one year after the major eruption. Science 216(4543):292–293. doi: 10.1126/science.216.4543.292 PubMedCrossRefGoogle Scholar
  53. Siwik EIH, Campbell LM, Mierle G (2010) Distribution and trends of mercury in deciduous tree cores. Environ Pollut 158(6):2067–2073. doi: 10.1016/j.envpol.2010.03.002 PubMedCrossRefGoogle Scholar
  54. Smith WH (1972) Lead and mercury burden of urban woody plants. Science 176(4040):1237–1238. doi: 10.1126/science.176.4040.1237 PubMedCrossRefGoogle Scholar
  55. Tack FMG, Vanhaesebroeck T, Verloo MG, Van Rompaey K, Van Ranst E (2005) Mercury baseline levels in Flemish soils (Belgium). Environ Pollut 134(1):173–179PubMedCrossRefGoogle Scholar
  56. Taiz L, Zeiger E (2006) Plant physiology. Sinauer, SunderlandGoogle Scholar
  57. Vandal GM, Fitzgerald WF, Boutron CF, Candelone J-P (1993) Variations in mercury deposition to Antarctica over the past 34,000 years. Nature 362(6421):621–623CrossRefGoogle Scholar
  58. Watt SFL, Pyle DM, Mather TA, Day JA, Aiuppa A (2007) The use of tree-rings and foliage as an archive of volcanogenic cation deposition. Environ Pollut 148(1):48–61. doi: 10.1016/j.envpol.2006.11.007 PubMedCrossRefGoogle Scholar
  59. White JDL, Schmincke H-U (1999) Phreatomagmatic eruptive and depositional processes during the 1949 eruption on La Palma (Canary Islands). J Volcanol Geotherm Res 94(1–4):283–304. doi: 10.1016/s0377-0273(99)00108-0 CrossRefGoogle Scholar
  60. Witt MLI, Mather TA, Pyle DM, Aiuppa A, Bagnato E, Tsanev VI (2008) Mercury and halogen emissions from Masaya and Telica volcanoes, Nicaragua. J Geophys Res Solid Earth 113(B6), B06203. doi: 10.1029/2007jb005401 CrossRefGoogle Scholar
  61. Wu Y, Zhou Q, Adriano DC (1991) Interim environmental guidelines for cadmium and mercury in soils of China. Water Air Soil Pollut 57–58(1):733–743. doi: 10.1007/bf00282937 CrossRefGoogle Scholar
  62. Zhang L, Qian J-L, Planas D (1995) Mercury concentration in tree rings of black spruce (Picea mariana, Mill. B.S.P.) in boreal Quebec, Canada. Water Air Soil Pollut 81(1):163–173. doi: 10.1007/bf00477263 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • José Antonio Rodríguez Martín
    • 1
    Email author
  • Nikos Nanos
    • 2
  • José Carlos Miranda
    • 2
  • Gregoria Carbonell
    • 3
  • Luis Gil
    • 2
  1. 1.Department of the EnvironmentInstituto Nacional de Investigación y Tecnología Agraria y Alimentaria (I.N.I.A)MadridSpain
  2. 2.School of Forest EngineeringMadrid Technical UniversityMadridSpain
  3. 3.Laboratory for Ecotoxicology, Department of the EnvironmentINIAMadridSpain

Personalised recommendations