Advertisement

Stimulation der Frakturheilung durch Wachstumsfaktoren und zellbasierte Technologien

  • J. Everding
  • J. Stolberg-Stolberg
  • M. J. Raschke
  • R. StangeEmail author
Leitthema

Zusammenfassung

Knochen besitzt die besondere Fähigkeit, sich nach einem Trauma vollständig zu regenerieren. In der Regel gelingt es dem Gewebe, die geometrische Form und biomechanische Stabilität – dem prätraumatischen Zustand entsprechend – wiederzuerlangen. Im klinischen Alltag kommt es allerdings immer wieder zu einer Störung der Frakturheilung, bedingt durch eine unzureichende mechanische Stabilität und/oder insuffiziente biologische Prozesse im Bereich der Frakturregion. Durch intensive Erforschung der physiologischen Vorgänge im Rahmen der Frakturheilung sowie Herstellung und klinischen Einsatz von Wachstumsfaktoren besteht seit der Jahrtausendwende die Möglichkeit, lokale biologische Vorgänge durch Osteoinduktion in der Frakturregion zu verbessern. Trotz anfänglich vielversprechender klinischer Ergebnisse v. a. der „bone morphogenetic proteins“ konnten sich Wachstumsfaktoren jedoch in der klinischen Anwendung nicht uneingeschränkt etablieren. Aktuell werden weitere Wachstumsfaktoren im Hinblick auf ihre supportiven und osteoinduktiven Eigenschaften im Rahmen der Frakturheilung und deren mögliche Anwendung in der Klinik untersucht. Die Entwicklung zellbasierter Technologien ist ein weiterer vielversprechender Ansatz, um die Frakturheilung positiv zu beeinflussen. Neben dem Goldstandard der autologen (Kortiko‑)Spongiosatransplantation hat die Aspiration von mesenchymalen Stromazellen in den letzten Jahren zunehmend an Bedeutung gewonnen. Allogene Knochenzelltransplantationsverfahren und besonders die Gentherapie sind vielversprechende Ansätze für die Behandlung von Frakturheilungsstörungen. Die vorliegende Arbeit gibt einen Überblick über aktuelle und zukünftige Möglichkeiten der Modulation der Frakturheilung durch Wachstumsfaktoren und zellbasierte Technologien.

Schlüsselwörter

Osteogenese „Bone morphogenetic proteins“ Gentherapie Pseudarthrosen Transplantation mesenchymaler Stammzellen 

Stimulation of fracture healing by growth factors and cell-based technologies

Abstract

Bone has the special capability to completely regenerate after trauma and to re-establish its original geometry and biomechanical stability corresponding to the pretrauma conditions. Nevertheless, in daily clinical practice impaired fracture healing and nonunions are regular complications as a result of inadequate mechanical stability and/or insufficient biological processes around the fracture region. Since the beginning of the millennium, intensive research on the physiological processes in bone healing as well as the production and clinical administration of growth factors have enabled the possibility to improve the local biological processes during fracture healing by osteoinduction. Although the initial clinical results, particularly of bone morphogenetic proteins, in fracture healing were promising, growth factors did not become established for unrestricted use in the clinical application. Currently, additional growth factors are being investigated with respect to the potential supportive and osteoinductive characteristics for enhancement of fracture healing and possible clinical applications. Furthermore, the development of cell-based technologies is another promising approach to positively stimulate fracture healing. In addition to the gold standard of autologous bone grafting, harvesting of mesenchymal stroma cells by aspiration has gained in importance in recent years. Allogeneic bone cell transplantation procedures and in particular gene therapy are promising new strategies for the treatment of disorders of fracture healing. This review gives an overview of present and future possibilities for modulation of fracture healing by growth factors and cell-based technologies.

Keywords

Osteogenesis Bone morphogenetic proteins Gene therapy Non-unions Mesenchymal stem cell transplantation 

Notes

Einhaltung ethischer Richtlinien

Interessenkonflikt

J. Everding, J. Stolberg-Stolberg, M.J. Raschke und R. Stange geben an, dass kein Interessenkonflikt besteht.

Für diesen Beitrag wurden von den Autoren keine Studien an Menschen oder Tieren durchgeführt. Für die aufgeführten Studien gelten die jeweils dort angegebenen ethischen Richtlinien.

Literatur

  1. 1.
    Balmayor ER, van Griensven M (2015) Gene therapy for bone engineering. Front Bioeng Biotechnol 3:9CrossRefGoogle Scholar
  2. 2.
    Becerikli M, Jaurich H, Schira J, Schulte M, Dobele C, Wallner C et al (2017) Age-dependent alterations in osteoblast and osteoclast activity in human cancellous bone. J Cell Mol Med 21(11):2773–2781CrossRefGoogle Scholar
  3. 3.
    Calori GM, Colombo M, Mazza EL, Mazzola S, Malagoli E, Mineo GV (2014) Incidence of donor site morbidity following harvesting from iliac crest or RIA graft. Injury 45(Suppl 6):S116–S120CrossRefGoogle Scholar
  4. 4.
    Calori GM, Giannoudis PV (2011) Enhancement of fracture healing with the diamond concept: the role of the biological chamber. Injury 42(11):1191–1193CrossRefGoogle Scholar
  5. 5.
    Calori GM, Phillips M, Jeetle S, Tagliabue L, Giannoudis PV (2008) Classification of non-union: need for a new scoring system? Injury 39(Suppl 2):S59–S63CrossRefGoogle Scholar
  6. 6.
    Dawson J, Kiner D, Gardner W 2nd, Swafford R, Nowotarski PJ (2014) The reamer-irrigator-aspirator as a device for harvesting bone graft compared with iliac crest bone graft: union rates and complications. J Orthop Trauma 28(10):584–590CrossRefGoogle Scholar
  7. 7.
    Desai P, Hasan SM, Zambrana L, Hegde V, Saleh A, Cohn MR et al (2015) Bone mesenchymal stem cells with growth factors successfully treat nonunions and delayed unions. HSS J 11(2):104–111CrossRefGoogle Scholar
  8. 8.
    DiGiovanni CW, Lin SS, Baumhauer JF, Daniels T, Younger A, Glazebrook M et al (2013) Recombinant human platelet-derived growth factor-BB and beta-tricalcium phosphate (rhPDGF-BB/beta-TCP): an alternative to autogenous bone graft. J Bone Joint Surg Am 95(13):1184–1192CrossRefGoogle Scholar
  9. 9.
    Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini F, Krause D et al (2006) Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 8(4):315–317CrossRefGoogle Scholar
  10. 10.
    Eastlack RK, Garfin SR, Brown CR, Meyer SC (2014) Osteocel Plus cellular allograft in anterior cervical discectomy and fusion: evaluation of clinical and radiographic outcomes from a prospective multicenter study. Spine 39(22):E1331–E1337CrossRefGoogle Scholar
  11. 11.
    Einhorn TA, Gerstenfeld LC (2015) Fracture healing: mechanisms and interventions. Nat Rev Rheumatol 11(1):45–54CrossRefGoogle Scholar
  12. 12.
    Evans CH (2010) Gene therapy for bone healing. Expert Rev Mol Med 12:e18CrossRefGoogle Scholar
  13. 13.
    Feichtinger GA, Hofmann AT, Slezak P, Schuetzenberger S, Kaipel M, Schwartz E et al (2014) Sonoporation increases therapeutic efficacy of inducible and constitutive BMP2/7 in vivo gene delivery. Hum Gene Ther Methods 25(1):57–71CrossRefGoogle Scholar
  14. 14.
    Friedlaender GE, Perry CR, Cole JD, Cook SD, Cierny G, Muschler GF et al (2001) Osteogenic protein-1 (bone morphogenetic protein-7) in the treatment of tibial nonunions. J Bone Joint Surg Am 83-A(Suppl 1(Pt 2)):151–158Google Scholar
  15. 15.
    Garrison KR, Shemilt I, Donell S, Ryder JJ, Mugford M, Harvey I et al (2010) Bone morphogenetic protein (BMP) for fracture healing in adults. Cochrane Database Syst Rev.  https://doi.org/10.1002/14651858.CD006950.pub2 CrossRefPubMedGoogle Scholar
  16. 16.
    Giannoudis PV, Einhorn TA, Marsh D (2007) Fracture healing: the diamond concept. Injury 38(Suppl 4):S3–S6CrossRefGoogle Scholar
  17. 17.
    Govender S, Csimma C, Genant HK, Valentin-Opran A, Amit Y, Arbel R et al (2002) Recombinant human bone morphogenetic protein-2 for treatment of open tibial fractures: a prospective, controlled, randomized study of four hundred and fifty patients. J Bone Joint Surg Am 84-A(12):2123–2134CrossRefGoogle Scholar
  18. 18.
    Hernigou P, Poignard A, Beaujean F, Rouard H (2005) Percutaneous autologous bone-marrow grafting for nonunions. Influence of the number and concentration of progenitor cells. J Bone Joint Surg Am 87(7):1430–1437PubMedGoogle Scholar
  19. 19.
    Hollinger JO, Hart CE, Hirsch SN, Lynch S, Friedlaender GE (2008) Recombinant human platelet-derived growth factor: biology and clinical applications. J Bone Joint Surg Am 90(Suppl 1):48–54CrossRefGoogle Scholar
  20. 20.
    Hu K, Olsen BR (2016) The roles of vascular endothelial growth factor in bone repair and regeneration. Bone 91:30–38CrossRefGoogle Scholar
  21. 21.
    Kasten P, Beyen I, Egermann M, Suda AJ, Moghaddam AA, Zimmermann G et al (2008) Instant stem cell therapy: characterization and concentration of human mesenchymal stem cells in vitro. Eur Cell Mater 16:47–55CrossRefGoogle Scholar
  22. 22.
    Kawaguchi H, Nakamura K, Tabata Y, Ikada Y, Aoyama I, Anzai J et al (2001) Acceleration of fracture healing in nonhuman primates by fibroblast growth factor-2. J Clin Endocrinol Metab 86(2):875–880CrossRefGoogle Scholar
  23. 23.
    Kawaguchi H, Oka H, Jingushi S, Izumi T, Fukunaga M, Sato K et al (2010) A local application of recombinant human fibroblast growth factor 2 for tibial shaft fractures: A randomized, placebo-controlled trial. J Bone Miner Res 25(12):2735–2743CrossRefGoogle Scholar
  24. 24.
    Le ADK, Enweze L, DeBaun MR, Dragoo JL (2018) Current clinical recommendations for use of platelet-rich plasma. Curr Rev Musculoskelet Med 11(4):624–634CrossRefGoogle Scholar
  25. 25.
    Lieberman JR, Daluiski A, Einhorn TA (2002) The role of growth factors in the repair of bone. Biology and clinical applications. J Bone Joint Surg Am 84-A(6):1032–1044CrossRefGoogle Scholar
  26. 26.
    Moghaddam A, Thaler B, Bruckner T, Tanner M, Schmidmaier G (2016) Treatment of atrophic femoral non-unions according to the diamond concept: Results of one- and two-step surgical procedure. J Orthop 14(1):123–133CrossRefGoogle Scholar
  27. 27.
    Roffi A, Di Matteo B, Krishnakumar GS, Kon E, Filardo G (2017) Platelet-rich plasma for the treatment of bone defects: from pre-clinical rational to evidence in the clinical practice. A systematic review. Int Orthop 41(2):221–237CrossRefGoogle Scholar
  28. 28.
    Schmidmaier G, Herrmann S, Green J, Weber T, Scharfenberger A, Haas NP et al (2006) Quantitative assessment of growth factors in reaming aspirate, iliac crest, and platelet preparation. Bone 39(5):1156–1163CrossRefGoogle Scholar
  29. 29.
    Scott RT, Hyer CF (2013) Role of cellular allograft containing mesenchymal stem cells in high-risk foot and ankle reconstructions. J Foot Ankle Surg 52(1):32–35CrossRefGoogle Scholar
  30. 30.
    Seeherman H, Li R, Wozney J (2003) A review of preclinical program development for evaluating injectable carriers for osteogenic factors. J Bone Joint Surg Am 85-A(Suppl 3):96–108CrossRefGoogle Scholar
  31. 31.
    Simpson AH, Mills L, Noble B (2006) The role of growth factors and related agents in accelerating fracture healing. J Bone Joint Surg Br 88(6):701–705CrossRefGoogle Scholar
  32. 32.
    Toosi S, Behravan N, Behravan J (2018) Nonunion fractures, mesenchymal stem cells and bone tissue engineering. J Biomed Mater Res A 106(9):2552–2562CrossRefGoogle Scholar
  33. 33.
    Urist MR (1965) Bone: formation by autoinduction. Science 150(3698):893–899CrossRefGoogle Scholar
  34. 34.
    Wang W, Yeung KWK (2017) Bone grafts and biomaterials substitutes for bone defect repair: A review. Bioact Mater 2(4):224–247CrossRefGoogle Scholar
  35. 35.
    Wozney JM, Rosen V, Celeste AJ, Mitsock LM, Whitters MJ, Kriz RW et al (1988) Novel regulators of bone formation: molecular clones and activities. Science 242(4885):1528–1534CrossRefGoogle Scholar
  36. 36.
    Yang YQ, Tan YY, Wong R, Wenden A, Zhang LK, Rabie AB (2012) The role of vascular endothelial growth factor in ossification. Int J Oral Sci 4(2):64–68CrossRefGoogle Scholar
  37. 37.
    Zhou S, Greenberger JS, Epperly MW, Goff JP, Adler C, Leboff MS et al (2008) Age-related intrinsic changes in human bone-marrow-derived mesenchymal stem cells and their differentiation to osteoblasts. Aging Cell 7(3):335–343CrossRefGoogle Scholar

Copyright information

© Springer Medizin Verlag GmbH, ein Teil von Springer Nature 2019

Authors and Affiliations

  • J. Everding
    • 1
  • J. Stolberg-Stolberg
    • 1
  • M. J. Raschke
    • 1
  • R. Stange
    • 2
    • 3
    Email author
  1. 1.Klinik für Unfall‑, Hand- und WiederherstellungschirurgieUniversitätsklinikum MünsterMünsterDeutschland
  2. 2.Abteilung für Regenerative Muskuloskelettale MedizinUniversitätsklinikum MünsterMünsterDeutschland
  3. 3.Institut für Muskuloskelettale Medizin (IMM)Universitätsklinikum MünsterMünsterDeutschland

Personalised recommendations