Advertisement

Skaphoidpseudarthrose

Komplexe Rekonstruktionen mithilfe vaskularisierter Knochentransplantate
  • K. H. Kalb
  • M. Langer
  • J. Windolf
  • J. van Schoonhoven
  • T. PillukatEmail author
Leitthema

Zusammenfassung

Die wichtigsten Ziele der Skaphoidrekonstruktion bei Pseudarthrosen sind die Beseitigung der „Humpback“-Deformität, die Wiederausrichtung der proximalen Handwurzelreihe und die stabile knöcherne Heilung des Skaphoids. Zu diesem Zweck ist in den meisten Fällen die Insertion eines Knochentransplantats erforderlich. Um die Heilungsrate zu erhöhen und die Durchblutung zu verbessern, wurden verschiedene Formen vaskularisierter Knochentransplantate entwickelt. Gefäßgestielte Transplantate werden vorzugsweise von der Dorsal- oder Palmarseite des distalen Radius entnommen, mit Heilungsraten zwischen 27 % und 100 %. Freie vaskularisierte Transplantate können vom Beckenkamm und von der medialen oder der lateralen Femurkondyle gehoben werden, mit Fusionsraten zwischen 60 % und 100 %. Für ihre Anwendung ist eine mikrochirurgische Ausrüstung erforderlich. Osteochondrale Transplantate von den Femukondylen bieten bisher die einzige Möglichkeit, Transplantate zu gewinnen, die Teile der Gelenkfläche des unbelasteten Patellagleitlagers tragen und damit einen vaskularisierten Gelenkflächenersatz ermöglichen. Die Anwendung vaskularisierter Knochentransplantate wird kontrovers diskutiert, weil ihre Überlegenheit gegenüber nichtvaskularisierten Knochentransplantaten, die in einzelnen Serien ebenfalls bis100 %ige Ausheilungsraten erreichen, nicht belegt ist. Sie sind indiziert bei Zweiteingriffen nach fehlgeschlagenen Rekonstruktionen und bei Pseudarthrosen mit kleinen avaskulären proximalen Polfragmenten. Da bisher keine evidenzbasierten Leitlinien existieren, wird ein erfahrungsbasierter Behandlungsalgorithmus für Skaphoidpseudarthrosen unter besonderer Berücksichtigung vaskularisierter Transplantate dargestellt.

Schlüsselwörter

Rekonstruktive chirurgische Verfahren Blutversorgung Radius Beckenkamm Femurkondyle 

Scaphoid pseudarthrosis

Complex reconstruction using vascularized bone grafts

Abstract

The most important goals of scaphoid reconstruction in pseudarthrosis are correction of the humpback deformity, the realignment of the proximal carpal row and the bony union of the scaphoid. Therefore, in most cases bone grafting is required. To increase the healing rate and to improve vascularization, several kinds of vascularized bone grafts have been developed. Pedicled grafts are preferably harvested from the dorsal or palmar side of the distal radius with fusion rates between 27% and 100%. Free microvascular grafts can be obtained from the iliac crest and the medial or lateral femoral condyle with fusion rates between 60% and 100%. For their application microsurgical equipment and skills are required. Up to now osteochondral grafts from the femoral condyle offer the only chance for joint surface replacement by transferring part of the surface of the femoropatellar joint. The use of vascularized grafts is still a matter of controversy, since their superiority is still unproven compared to nonvascularized grafts, which also achieved 100% fusion rates in several series. They are indicated in secondary procedures after failed reconstruction and nonunion with small avascular proximal pole fragments. Since no evidence-based guidelines exist, this article provides an experience-based treatment algorithm for scaphoid nonunion with special consideration to vascularized bone grafts.

Keywords

Reconstructive surgical procedures Blood supply Radius Iliac crest Femoral condyle 

Notes

Einhaltung ethischer Richtlinien

Interessenkonflikt

K.H. Kalb, M. Langer, J. Windolf, J. van Schoonhoven und T. Pillukat geben an, dass kein Interessenkonflikt besteht.

Dieser Beitrag beinhaltet keine von den Autoren durchgeführten Studien an Menschen oder Tieren.

Literatur

  1. 1.
    Schädel-Höpfner M, Bickert B, Dumont C et al (2016) Die frische Skaphoidfraktur: Management unter Berucksichtigung der neuen S3-Leitlinie. Orthopade 45:945–950CrossRefGoogle Scholar
  2. 2.
    Pinder RM, Brkljac M, Rix L, Muir L, Brewster M (2015) Treatment of scaphoid nonunion: a systematic review of the existing evidence. J Hand Surg 40(1805):1797–1805.e3CrossRefGoogle Scholar
  3. 3.
    Mathoulin CL, Arianni M (2018) Treatment of the scaphoid humpback deformity—is correction of the dorsal intercalated segment instability deformity critical? J Hand Surg Eur Vol 43:13–23CrossRefGoogle Scholar
  4. 4.
    Krimmer H, Kremling E, van Schoonhoven J, Prommersberger KJ, Hahn P (1999) Proximale Kahnbeinpseudarthrose—Rekonstruktion durch dorsale Verschraubung und Spongiosa-Transplantation. Handchir Mikrochir Plast Chir 31:174–177CrossRefGoogle Scholar
  5. 5.
    Kim J, Park JW, Chung J et al (2018) Non-vascularized iliac bone grafting for scaphoid nonunion with avascular necrosis. J Hand Surg Eur Vol 43:24–31CrossRefGoogle Scholar
  6. 6.
    Rancy SK, Swanstrom MM, DiCarlo EF et al (2018) Success of scaphoid nonunion surgery is independent of proximal pole vascularity. J Hand Surg Eur Vol 43:32–40CrossRefGoogle Scholar
  7. 7.
    Hori Y, Tamai S, Okuda H et al (1979) Blood vessel transplantation to bone. J Hand Surg Am 4:23–33CrossRefGoogle Scholar
  8. 8.
    Sunagawa T, Bishop AT, Muramatsu K (2000) Role of conventional and vascularized bone grafts in scaphoid nonunion with avascular necrosis: a canine experimental study. J Hand Surg Am 25:849–859CrossRefGoogle Scholar
  9. 9.
    Willems WF, Kremer T, Friedrich P, Bishop AT (2012) Surgical revascularization induces angiogenesis in orthotopic bone allograft. Clin Orthop Relat Res 470:2496–2502CrossRefGoogle Scholar
  10. 10.
    Higgins JP, Borumandi F, Burger HK et al (2018) Nonvascularized cartilage grafts versus vascularized cartilage flaps: comparison of cartilage quality 6 months after transfer. J Hand Surg Am 43:188.e1–188.e8CrossRefGoogle Scholar
  11. 11.
    Sauerbier M, Bishop AT, Ofer N (2009) Gestielte vaskularisierte Knochentransplantate von der Streckseite des peripheren Speichenendes zur Skaphoidrekonstruktion. Oper Orthop Traumatol 21:373–385CrossRefGoogle Scholar
  12. 12.
    Zaidemberg C, Siebert JW, Angrigiani C (1991) A new vascularized bone graft for scaphoid nonunion. J Hand Surg Am 16:474–478CrossRefGoogle Scholar
  13. 13.
    Henry M (2018) Scaphoid nonunion: what is the role of the Zaidemberg 1,2 intercompartmental supraretinacular arterial flap? J Hand Surg Eur Vol 43:41–47CrossRefGoogle Scholar
  14. 14.
    Chang MA, Bishop AT, Moran SL, Shin AY (2006) The outcomes and complications of 1,2-Intercompartmental Supraretinacular artery pedicled vascularized bone grafting of scaphoid nonunions. J Hand Surg 31:387–396CrossRefGoogle Scholar
  15. 15.
    Schacher B, Bottcher R, Vogel A et al (2016) Das gestielte vaskularisierte Knochentransplantat zur Skaphoidrekonstruktion nach Zaidemberg. Orthopade 45:974–984CrossRefGoogle Scholar
  16. 16.
    Aibinder WR, Wagner ER, Bishop AT, Shin AY (2017) Bone grafting for scaphoid nonunions: is free vascularized bone grafting superior for scaphoid nonunion? Hand (N Y).  https://doi.org/10.1177/1558944717736397 CrossRefGoogle Scholar
  17. 17.
    Lee JC, Lim J, Chacha PB (1997) The anatomical basis of the vascularized pronator quadratus pedicled bone graft. J Hand Surg Br 22:644–646CrossRefGoogle Scholar
  18. 18.
    Mathoulin CL, Haerle M (2004) Technique: vascularized bone grafts from the volar distal radius to treat scaphoid nonunion. J Am Soc Surg Hand 4:4–10CrossRefGoogle Scholar
  19. 19.
    Kawai H, Yamamoto K (1988) Pronator quadratus pedicled bone graft for old scaphoid fractures. J Bone Joint Surg Br 70:829–831CrossRefGoogle Scholar
  20. 20.
    Tanner C, Johnson T, Majors A et al (2018) The Vascularity and osteogenesis of a vascularized flap for the treatment of scaphoid nonunion: the pedicle volar distal radial periosteal flap. Hand (N Y).  https://doi.org/10.1177/1558944717751191 CrossRefGoogle Scholar
  21. 21.
    Noaman HH, Shiha AE, Ibrahim AK (2011) Functional outcomes of nonunion scaphoid fracture treated by pronator quadratus pedicled bone graft. Ann Plast Surg 66:47–52CrossRefGoogle Scholar
  22. 22.
    Gras M, Mathoulin C (2011) Vascularized bone graft pedicled on the volar carpal artery from the volar distal radius as primary procedure for scaphoid non-union. Orthop Traumatol Surg Res 97:800–806CrossRefGoogle Scholar
  23. 23.
    Pechlaner S, Hussl H, Kunzel KH (1987) Alternative Operationsmethode bei Kahnbeinpseudarthrosen. Prospektive Studie. Handchir Mikrochir Plast Chir 19:302–305PubMedGoogle Scholar
  24. 24.
    Taylor GI, Townsend P, Corlett R (1979) Superiority of the deep circumflex iliac vessels as the supply for free groin flaps. Plast Reconstr Surg 64:595–604CrossRefGoogle Scholar
  25. 25.
    Gabl M, Pechlaner S, Zimmermann R (2009) Die Rekonstruktion der Kahnbeinpseudarthrose mit avaskularem proximalen Fragment mit freiem mikrovaskular gestielten Beckenkammtransplantat. Oper Orthop Traumatol 21:386–395CrossRefGoogle Scholar
  26. 26.
    Harpf C, Gabl M, Reinhart C et al (2001) Small free vascularized iliac crest bone grafts in reconstruction of the scaphoid bone: a retrospective study in 60 cases. Plast Reconstr Surg 108:664–674CrossRefGoogle Scholar
  27. 27.
    Arora R, Lutz M, Zimmermann R et al (2010) Free vascularised iliac bone graft for recalcitrant avascular nonunion of the scaphoid. J Bone Joint Surg Br 92:224–229CrossRefGoogle Scholar
  28. 28.
    Doi K, Oda T, Soo-Heong T, Nanda V (2000) Free vascularized bone graft for nonunion of the scaphoid. J Hand Surg Am 25(3):507–519CrossRefGoogle Scholar
  29. 29.
    Wong VW, Burger HK, Iorio ML, Higgins JP (2015) Lateral femoral condyle flap: an alternative source of vascularized bone from the distal femur. J Hand Surg Am 40:1972–1980CrossRefGoogle Scholar
  30. 30.
    Bürger HK, Windhofer C, Gaggl AJ, Higgins JP (2013) Vascularized medial femoral trochlea osteocartilaginous flap reconstruction of proximal pole scaphoid nonunions. J Hand Surg Am 38:690–700CrossRefGoogle Scholar
  31. 31.
    Kälicke T, Bürger H, Müller EJ (2008) Freies gefässgestieltes Knorpel-Knochen-Transplantat bei avaskulärer Nekrose des proximalen Kahnbeinpols. Beschreibung eines neuartigen Operationsverfahrens. Unfallchirurg 111:201–205CrossRefGoogle Scholar
  32. 32.
    Sotereanos DG, Darlis NA, Dailiana ZH, Sarris IK, Malizos KN (2006) A capsular-based vascularized distal radius graft for proximal pole scaphoid pseudarthrosis. J Hand Surg Am 31:580–587CrossRefGoogle Scholar
  33. 33.
    Bürger H, Gaggl AJ, Kukutschki W, Müller EJ (2009) Das freie mikrovaskuläre Knochentransplantat vom medialen Femurkondylus zur Behandlung der Kahnbeinpseudarthrose. Oper Orthop Traumatol 21:396–404CrossRefGoogle Scholar
  34. 34.
    Kalb K (2016) Freies gefässgestieltes Femurknochentransplantat bei Skaphoidpseudarthrose : Indikation und Technik. Orthopade 45:966–973CrossRefGoogle Scholar
  35. 35.
    Elgammal A, Lukas B (2015) Vascularized medial femoral condyle graft for management of scaphoid non-union. J Hand Surg Eur Vol 40:848–854CrossRefGoogle Scholar
  36. 36.
    Kollitz KM, Pulos N, Bishop AT, Shin AY (2018) Primary medial femoral condyle vascularized bone graft for scaphoid nonunions with carpal collapse and proximal pole avascular necrosis. J Hand Surg Eur Vol 1753193418789329.  https://doi.org/10.1177/1753193418789329 CrossRefPubMedGoogle Scholar
  37. 37.
    Chaudhry T, Uppal L, Power D, Craigen M, Tan S (2017) Scaphoid nonunion with poor prognostic factors: the role of the free medial femoral condyle vascularized bone graft. Hand (N Y) 12:135–139CrossRefGoogle Scholar
  38. 38.
    Higgins JP, Burger HK (2013) Proximal scaphoid arthroplasty using the medial femoral trochlea flap. J Wrist Surg 2:228–233CrossRefGoogle Scholar
  39. 39.
    Pulos N, Kollitz KM, Bishop AT, Shin AY (2018) Free vascularized medial femoral condyle bone graft after failed scaphoid nonunion surgery. J Bone Joint Surg Am 100:1379–1386CrossRefGoogle Scholar
  40. 40.
    Al-Jabri T, Mannan A, Giannoudis P (2014) The use of the free vascularised bone graft for nonunion of the scaphoid: a systematic review. J Orthop Surg Res 9:21CrossRefGoogle Scholar
  41. 41.
    Jones DB Jr., Burger H, Bishop AT, Shin AY (2008) Treatment of scaphoid waist nonunions with an avascular proximal pole and carpal collapse. A comparison of two vascularized bone grafts. J Bone Joint Surg Am 90:2616–2625CrossRefGoogle Scholar
  42. 42.
    Vedung T, Vinnars B (2014) Ectopic bone formation after medial femoral condyle graft to scaphoid nonunion. J Wrist Surg 3:46–49CrossRefGoogle Scholar
  43. 43.
    Windhofer C, Wong VW, Larcher L et al (2016) Knee donor site morbidity following harvest of medial femoral trochlea osteochondral flaps for carpal reconstruction. J Hand Surg Am 41(e611):610–614.e1CrossRefGoogle Scholar
  44. 44.
    Asmus A, Lautenbach M, Schacher B, Kim S, Eisenschenk A (2016) Skaphoidpseudarthrose: Indikationsbereiche für das avaskuläre Beckenkamm- oder Radiustransplantat. Orthopade 45:951–965CrossRefGoogle Scholar
  45. 45.
    Braga-Silva J, Peruchi FM, Moschen GM, Gehlen D, Padoin AV (2008) A comparison of the use of distal radius vascularised bone graft and non-vascularised iliac crest bone graft in the treatment of non-union of scaphoid fractures. J Hand Surg Eur Vol 33:636–640CrossRefGoogle Scholar
  46. 46.
    Ditsios K, Konstantinidis I, Agas K, Christodoulou A (2017) Comparative meta-analysis on the various vascularized bone flaps used for the treatment of scaphoid nonunion. J Orthop Res 35:1076–1085CrossRefGoogle Scholar
  47. 47.
    Schmidle G, Ebner HL, Klauser AS et al (2018) Correlation of CT imaging and histology to guide bone graft selection in scaphoid non-union surgery. Arch Orthop Trauma Surg.  https://doi.org/10.1007/s00402-018-2983-0 CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Schmidle G, Ebner HL, Klima G et al (2018) Time-dependent changes in bone healing capacity of scaphoid fractures and non-unions. J Anat 232:908–918CrossRefGoogle Scholar
  49. 49.
    Prommersberger K‑J, Pillukat T, Kalb K (2012) Algorithm for the treatment of scaphoid fractures. Workshop 20 Jahre Handchirurgie Bad Neustadt, Bad Neustadt an der SaaleGoogle Scholar

Copyright information

© Springer Medizin Verlag GmbH, ein Teil von Springer Nature 2019

Authors and Affiliations

  • K. H. Kalb
    • 1
  • M. Langer
    • 2
  • J. Windolf
    • 3
  • J. van Schoonhoven
    • 1
  • T. Pillukat
    • 1
    Email author
  1. 1.Klinik für HandchirurgieBad Neustadt an der SaaleDeutschland
  2. 2.Klinik und Poliklinik für Unfall‑, Hand- und WiederherstellungschirurgieWestfälische Wilhelms-UniversitätMünsterDeutschland
  3. 3.Klinik für Unfall- und HandchirurgieUniversitätsklinikum DüsseldorfDüsseldorfDeutschland

Personalised recommendations