Advertisement

Patellofemorale Instabilität bei Kindern und Jugendlichen

  • S. Schützenberger
Leitthema

Zusammenfassung

Die Luxation der Kniescheibe stellt im Kindes- und Jugendalter eine der häufigsten Kniegelenkverletzungen dar. Nach eingehender klinischer und radiologischer Abklärung erfolgt die Behandlung der Erstluxation häufig konservativ frühfunktionell mithilfe spezieller Orthesen, wenn keine Begleitverletzungen vorliegen. Es werden jedoch in der Literatur, abhängig von den vorhandenen Risikofaktoren, Reluxationsraten von 35–70 % nach konservativer Therapie angegeben. Daher existieren unzählige Operationstechniken, die teilweise wiederum mit hohen Reluxationsraten verbunden sind oder bei unkritischer Anwendung zu einer frühzeitigen Arthrose des Patellofemoralgelenks führen können. Das Verständnis der patellofemoralen Instabilität wurde besonders in den letzten 2 Jahrzehnten durch eine Vielzahl an wissenschaftlichen Beiträgen erweitert. Das umfassendere Wissen über die Ursachen für eine bleibende Instabilität der Kniescheibe hat die Behandlung effizienter und präziser, aber auch komplexer gemacht.

Schlüsselwörter

Patellaluxationen Risikofaktoren Konservative Therapie Mediales patellofemorales Ligament Trochleadysplasie 

Patellofemoral instability in children and adolescents

Abstract

Dislocation of the patella is one of the most common knee injuries in childhood and adolescence. After detailed clinical and radiological clarification, conservative functional treatment with special orthotic devices is most commonly applied in patients with a primary dislocation without concomitant injuries; however, the redislocation rate after conservative treatment has been reported in the literature to be between 35% and 70%, depending on the risk factors present. Therefore, numerous surgical treatment options exist which are sometimes again associated with high redislocation rates and others can lead to early arthrosis of the patellofemoral joint when used indiscriminately. Many scientific contributions on the topic notably in the last two decades have increased the understanding of patellofemoral instability. The comprehensive knowledge of the causes for a persisting instability of the patella has made the treatment more efficient and precise but also more complex.

Keywords

Patella dislocations Risk factors Conservative treatment Medial patellofemoral ligament Trochlear dysplasia 

Notes

Einhaltung ethischer Richtlinien

Interessenkonflikt

S. Schützenberger gibt an, dass kein Interessenkonflikt besteht.

Dieser Beitrag beinhaltet keine vom Autor durchgeführten Studien an Menschen oder Tieren.

Literatur

  1. 1.
    Abbasi D, May MM, Wall EJ et al (2012) MRI findings in adolescent patients with acute traumatic knee hemarthrosis. J Pediatr Orthop 32:760–764CrossRefPubMedGoogle Scholar
  2. 2.
    AGA-Komitee-Knie-Patellofemoral (2015) Untersuchungstechniken/Diagnostik des Patellofemoralgelenkes. http://www.aga-online.ch. Zugegriffen: 16. Nov. 2018
  3. 3.
    Balcarek P, Oberthur S, Hopfensitz S et al (2014) Which patellae are likely to redislocate? Knee Surg Sports Traumatol Arthrosc 22:2308–2314.  https://doi.org/10.1007/s00167-013-2650-5 CrossRefPubMedGoogle Scholar
  4. 4.
    Becher C, Schumacher T, Fleischer B et al (2015) The effects of a dynamic patellar realignment brace on disease determinants for patellofemoral instability in the upright weight-bearing condition. J Orthop Surg Res 10:126.  https://doi.org/10.1186/s13018-015-0265-x CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Becher C, Fleischer B, Rase M et al (2017) Effects of upright weight bearing and the knee flexion angle on patellofemoral indices using magnetic resonance imaging in patients with patellofemoral instability. Knee Surg Sports Traumatol Arthrosc 25:2405–2413.  https://doi.org/10.1007/s00167-015-3829-8 CrossRefPubMedGoogle Scholar
  6. 6.
    Blønd L, Schöttle PB (2010) The arthroscopic deepening trochleoplasty. Knee Surg Sports Traumatol Arthrosc 18(4):480–485.  https://doi.org/10.1007/s00167-009-0935-5 CrossRefPubMedGoogle Scholar
  7. 7.
    Burks RT, Desio SM, Bachus KN et al (1998) Biomechanical evaluation of lateral patellar dislocations. Am J Knee Surg 11:24–31PubMedGoogle Scholar
  8. 8.
    Chotel F, Knorr G, Simian E et al (2011) Knee osteochondral fractures in skeletally immature patients: French multicenter study. Orthop Traumatol Surg Res 97:154–159.  https://doi.org/10.1016/j.otsr.2011.09.003 CrossRefGoogle Scholar
  9. 9.
    Chotel F, Berard J, Raux S (2014) Patellar instability in children and adolescents. Orthop Traumatol Surg Res 100:S125–S137.  https://doi.org/10.1016/j.otsr.2013.06.014 CrossRefPubMedGoogle Scholar
  10. 10.
    Conlan T, Garth WPJ, Lemons JE (1993) Evaluation of the medial soft-tissue restraints of the extensor mechanism of the knee. J Bone Joint Surg Am 75:682–693CrossRefPubMedGoogle Scholar
  11. 11.
    Deie M, Ochi M, Sumen Y et al (2003) Reconstruction of the medial patellofemoral ligament for the treatment of habitual or recurrent dislocation of the patella in children. J Bone Joint Surg Br 85:887–890CrossRefPubMedGoogle Scholar
  12. 12.
    Dejour H, Walch G, Nove-Josserand L, Guier C (1994) Factors of patellar instability: an anatomic radiographic study. Knee Surg Sports Traumatol Arthrosc 2:19–26CrossRefPubMedGoogle Scholar
  13. 13.
    Desio SM, Burks RT, Bachus KN (1998) Soft tissue restraints to lateral patellar translation in the human knee. Am J Sports Med 26:59–65.  https://doi.org/10.1177/03635465980260012701 CrossRefPubMedGoogle Scholar
  14. 14.
    Farr S, Huyer D, Sadoghi P et al (2014) Prevalence of osteoarthritis and clinical results after the Elmslie-Trillat procedure: A retrospective long-term follow-up. Int Orthop 38:61–66.  https://doi.org/10.1007/s00264-013-2083-2 CrossRefPubMedGoogle Scholar
  15. 15.
    Farrow LD, Alentado VJ, Abdulnabi Z et al (2014) The relationship of the medial patellofemoral ligament attachment to the distal femoral physis. Am J Sports Med 42:2214–2218.  https://doi.org/10.1177/0363546514539917 CrossRefPubMedGoogle Scholar
  16. 16.
    Fithian DC, Paxton EW, Stone ML et al (2004) Epidemiology and natural history of acute patellar dislocation. Am J Sports Med 32:1114–1121CrossRefPubMedGoogle Scholar
  17. 17.
    Fitzpatrick CK, Steensen RN, Tumuluri A et al (2016) Computational analysis of factors contributing to patellar dislocation. J Orthop Res 34:444–453.  https://doi.org/10.1002/jor.23041 CrossRefPubMedGoogle Scholar
  18. 18.
    Garron E, Jouve J‑L, Tardieu C et al (2003) Anatomic study of the anterior patellar groove in the fetal period. Rev Chir Orthop Reparatrice Appar Mot 89:407–412PubMedGoogle Scholar
  19. 19.
    Gomes JE (2008) Comparison between a static and a dynamic technique for medial patellofemoral ligament reconstruction. Arthroscopy 24:430–435.  https://doi.org/10.1016/j.arthro.2007.11.005 CrossRefPubMedGoogle Scholar
  20. 20.
    Hautamaa PV, Fithian DC, Kaufman KR et al (1998) Medial soft tissue restraints in lateral patellar instability and repair. Clin Orthop Relat Res 349:174–182CrossRefGoogle Scholar
  21. 21.
    Hensler D, Sillanpää PJ, Schoettle PB (2014) Medial patellofemoral ligament: anatomy, injury and treatment in the adolescent knee. Curr Opin Pediatr 26:70–78.  https://doi.org/10.1097/MOP.0000000000000055 CrossRefPubMedGoogle Scholar
  22. 22.
    Hughston JC (1968) Subluxation of the patella. J Bone Joint Surg Am 50:1003–1026CrossRefPubMedGoogle Scholar
  23. 23.
    Hughston JC (1968) Subluxation of the patella. J Bone Joint Surg Am 50(5):1003–1026CrossRefPubMedGoogle Scholar
  24. 24.
    Jaquith BP, Parikh SN (2017) Predictors of recurrent patellar instability in children and adolescents after first-time dislocation. J Pediatr Orthop 37:484–490.  https://doi.org/10.1097/BPO.0000000000000674 CrossRefPubMedGoogle Scholar
  25. 25.
    Kaiser P, Schmoelz W, Schoettle P et al (2017) Increased internal femoral torsion can be regarded as a risk factor for patellar instability—A biomechanical study. Clin Biomech 47:103–109.  https://doi.org/10.1016/j.clinbiomech.2017.06.007 CrossRefGoogle Scholar
  26. 26.
    Kaiser P, Attal R, Kammerer M et al (2016) Significant differences in femoral torsion values depending on the CT measurement technique. Arch Orthop Trauma Surg 136:1259.  https://doi.org/10.1007/s00402-016-2536-3 CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Kepler CK, Bogner EA, Hammoud S et al (2011) Zone of injury of the medial patellofemoral ligament after acute patellar dislocation in children and adolescents. Am J Sports Med 39:1444–1449.  https://doi.org/10.1177/0363546510397174 CrossRefPubMedGoogle Scholar
  28. 28.
    Kuroda R, Kambic H, Valdevit A, Andrish J (2001) Articular cartilage contact pressure after tibial tuberosity transfer a cadaveric study. Am J Sports Med 29(4):403–409CrossRefPubMedGoogle Scholar
  29. 29.
    Kuroda R, Kambic H, Valdevit A, Andrish J (2002) Distribution of patellofemoral joint pressures after femoral trochlear osteotomy. Knee Surg Sports Traumatol Arthrosc 10(1):33–37CrossRefPubMedGoogle Scholar
  30. 30.
    Lancourt JE, Cristini JA (1975) Patella alta and patella infera. Their etiological role in patellar dislocation, chondromalacia, and apophysitis of the tibial tubercle. J Bone Joint Surg Am 57:1112–1115CrossRefPubMedGoogle Scholar
  31. 31.
    Lewallen L, McIntosh A, Dahm D (2015) First-time patellofemoral dislocation: risk factors for recurrent instability. J Knee Surg 28:303–309.  https://doi.org/10.1055/s-0034-1398373 CrossRefPubMedGoogle Scholar
  32. 32.
    Lewallen LW, McIntosh AL, Dahm DL (2013) Predictors of recurrent instability after acute patellofemoral dislocation in pediatric and adolescent patients. Am J Sports Med 41:575–581.  https://doi.org/10.1177/0363546512472873 CrossRefPubMedGoogle Scholar
  33. 33.
    Lippacher S, Dejour D, Elsharkawi M, Dornacher D, Ring C, Dreyhaupt J, Reichel H, Nelitz M (2012) Observer agreement on the Dejour trochlear dysplasia classification: a comparison of true lateral radiographs and axial magnetic resonance images. Am J Sports Med 40(4):837–843CrossRefPubMedGoogle Scholar
  34. 34.
    Lippacher S, Reichel H, Nelitz M (2011) Radiological criteria for trochlear dysplasia in children and adolescents. J Pediatr Orthop B 20:341–344.  https://doi.org/10.1097/BPB.0b013e3283474c8b CrossRefPubMedGoogle Scholar
  35. 35.
    Lykissas MG, Li T, Eismann EA, Parikh SN (2014) Does medial patellofemoral ligament reconstruction decrease patellar height? A preliminary report. J Pediatr Orthop 34:78–85.  https://doi.org/10.1097/BPO.0b013e3182a12102 CrossRefPubMedGoogle Scholar
  36. 36.
    Maenpaa H, Lehto MU (1995) Surgery in acute patellar dislocation—evaluation of the effect of injury mechanism and family occurrence on the outcome of treatment. Br J Sports Med 29:239–241CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Nelitz M, Dreyhaupt J, Reichel H et al (2013) Anatomic reconstruction of the medial patellofemoral ligament in children and adolescents with open growth plates:surgical technique and clinical outcome. Am J Sports Med 41:58–63.  https://doi.org/10.1177/0363546512463683 CrossRefPubMedGoogle Scholar
  38. 38.
    Nelitz M, Dreyhaupt J, Williams SRM (2018) Anatomic reconstruction of the medial patellofemoral ligament in children and adolescents using a pedicled quadriceps tendon graft shows favourable results at a minimum of 2‑year follow-up. Knee Surg Sports Traumatol Arthrosc 26:1210–1215.  https://doi.org/10.1007/s00167-017-4597-4 CrossRefGoogle Scholar
  39. 39.
    Nietosvaara Y, Aalto K, Kallio PE (1994) Acute patellar dislocation in children: incidence and associated osteochondral fractures. J Pediatr Orthop 14:513–515CrossRefGoogle Scholar
  40. 40.
    Nomura E, Horiuchi Y, Inoue M (2002) Correlation of MR imaging findings and open exploration of medial patellofemoral ligament injuries in acute patellar dislocations. Knee 9:139–143CrossRefPubMedGoogle Scholar
  41. 41.
    Pagenstert G, Wolf N, Bachmann M et al (2012) Open lateral patellar retinacular lengthening versus open retinacular release in lateral patellar hypercompression syndrome: a prospective double-blinded comparative study on complications and outcome. Arthroscopy 28:788–797.  https://doi.org/10.1016/j.arthro.2011.11.004 CrossRefPubMedGoogle Scholar
  42. 42.
    Pesenti S, Blondel B, Armaganian G et al (2017) The lateral wedge augmentation trochleoplasty in a pediatric population: a 5-year follow-up study. J Pediatr Orthop B 26:458–464.  https://doi.org/10.1097/BPB.0000000000000395 CrossRefPubMedGoogle Scholar
  43. 43.
    Sanchis-Alfonso V, Merchant AC (2015) Iatrogenic medial patellar instability: an avoidable injury. Arthroscopy 31:1628–1632.  https://doi.org/10.1016/j.arthro.2015.01.028 CrossRefPubMedGoogle Scholar
  44. 44.
    Schottle PB, Hensler D, Imhoff AB (2010) Anatomical double-bundle MPFL reconstruction with an aperture fixation. Knee Surg Sports Traumatol Arthrosc 18:147–151.  https://doi.org/10.1007/s00167-009-0868-z CrossRefPubMedGoogle Scholar
  45. 45.
    Seitlinger G, Scheurecker G, Hogler R et al (2012) Tibial tubercle-posterior cruciate ligament distance: a new measurement to define the position of the tibial tubercle in patients with patellar dislocation. Am J Sports Med 40:1119–1125.  https://doi.org/10.1177/0363546512438762 CrossRefPubMedGoogle Scholar
  46. 46.
    Seitlinger G, Moroder P, Fink C, Wierer G (2017) Acquired femoral flexion deformity due to physeal injury during medial patellofemoral ligament reconstruction. Knee 24:680–685.  https://doi.org/10.1016/j.knee.2017.02.003 CrossRefPubMedGoogle Scholar
  47. 47.
    Sillanpää PJ, Mäenpää HM, Arendt EA (2010) Treatment of lateral patella dislocation in the skeletally immature athlete. Patellar Instab 18:83–92Google Scholar
  48. 48.
    Steensen RN, Bentley JC, Trinh TQ et al (2015) The prevalence and combined prevalences of anatomic factors associated with recurrent patellar dislocation: a magnetic resonance imaging study. Am J Sports Med 43:921–927.  https://doi.org/10.1177/0363546514563904 CrossRefPubMedGoogle Scholar
  49. 49.
    Steensen RN, Dopirak RM, Maurus PB (2005) A simple technique for reconstruction of the medial patellofemoral ligament using a quadriceps tendon graft. Arthroscopy 21:365–370.  https://doi.org/10.1016/j.arthro.2004.10.007 CrossRefPubMedGoogle Scholar
  50. 50.
    Tardieu C, Dupont JY (2001) The origin of femoral trochlear dysplasia: comparative anatomy, evolution, and growth of the patellofemoral joint. Rev Chir Orthop Reparatrice Appar Mot 87:373–383PubMedGoogle Scholar
  51. 51.
    Tomczak RJ, Guenther KP, Rieber A et al (1997) MR imaging measurement of the femoral antetorsional angle as a new technique: comparison with CT in children and adults. AJR Am J Roentgenol 168:791–794.  https://doi.org/10.2214/ajr.168.3.9057536 CrossRefPubMedGoogle Scholar
  52. 52.
    Tompkins M, Arendt EA (2016) A risk prediction model for redislocation following first time lateral patellar dislocation (LPD). Orthop J Sports Med 4:2325967116S00063CrossRefPubMedCentralGoogle Scholar
  53. 53.
    Vavken P, Wimmer MD, Camathias C et al (2013) Treating patella instability in skeletally immature patients. Arthroscopy 29:1410–1422.  https://doi.org/10.1016/j.arthro.2013.03.075 CrossRefPubMedGoogle Scholar
  54. 54.
    Weeks KD, Fabricant PD, Ladenhauf HN, Green DW (2012) Surgical options for patellar stabilization in the skeletally immature patient. Sports Med Arthrosc Rev 20:194–202PubMedGoogle Scholar

Copyright information

© Springer Medizin Verlag GmbH, ein Teil von Springer Nature 2018

Authors and Affiliations

  1. 1.AUVA Traumazentrum Wien, Standort MeidlingWienÖsterreich

Personalised recommendations