Advertisement

Der Unfallchirurg

, Volume 122, Issue 2, pp 95–102 | Cite as

Repositionstechniken in der Marknagelosteosynthese

  • P. M. RommensEmail author
  • R. Kuechle
  • A. Hofmann
  • S.-O. Dietz
Leitthema

Zusammenfassung

Die Marknagelung wurde ursprünglich für die Stabilisierung von Schaftfrakturen der langen Röhrenknochen entwickelt. Neue Nageldesigns und multiple Verriegelungsoptionen haben das Spektrum der Marknagelosteosynthese stark erweitert. Die Nagelosteosynthese von Frakturen außerhalb des Isthmus ist technisch anspruchsvoll, da die Fraktur vor Einführung des Marknagels reponiert werden muss. Indirekte Repositionstechniken umfassen die Verwendung eines Extensionstisches, eines großen Distraktors oder eines Fixateurs externe. Die direkte Reposition mithilfe von Repositionszangen, Zugschrauben, Cerclagen oder einer kurzen Platte kann die indirekte Reposition optimieren. Die Wahl des korrekten Eintrittspunkts ist für das optimale Operationsergebnis von überragender Bedeutung. Sie ist von den anatomischen Gegebenheiten und von der Nagelkrümmung abhängig. An der proximalen Tibia ist der optimale Eintrittspunkt direkt hinter der Patellarsehne bei stark gebeugtem Knie, alternativ über einen suprapatellaren Zugang bei leicht gebogenem Knie zu erreichen. Die Einführung des Nagels über den suprapatellaren Zugang ist ohne Stress auf die reponierten Frakturfragmente möglich. Mithilfe von Pollerschrauben wird ein zusätzlicher Isthmus in der Metaphyse erzeugt und damit das Auftreten einer Achsfehlstellung beim Einführen des Nagels verhindert. Nach Einführen des Nagels wird das kurze Frakturfragment mehrfach verriegelt.

Schlüsselwörter

Frakturen Metaphyse Intramedulläre Nagelung Reposition Verriegelung 

Reduction techniques in intramedullary nailing osteosynthesis

Abstract

Intramedullary nailing was originally conceived for the stabilization of shaft fractures of long bones. Due to new nail designs and multiple interlocking possibilities, the spectrum of nailing has significantly increased. Nailing of fractures beyond the isthmus is technically challenging because fractures need to be reduced before the nailing procedure starts. Indirect techniques of reduction include the use of an extension table, a large distractor or an external fixator. Direct reduction with pointed reduction forceps, lag screws, a cerclage wire or a short plate can optimize indirect reduction. The choice of the correct entry portal is of utmost importance for an optimal operative result. The location of the entry portal is dependent on the local anatomy and the bend of the nail. The optimal entry portal at the proximal tibia is directly behind the patellar tendon and accessible with the knee in more than 90° of flexion, alternatively through a suprapatellar approach with a slightly flexed knee joint. Insertion of the nail through the suprapatellar approach is possible without stress on the reduced fracture fragments. Blocking screws create an artificial isthmus in the metaphyseal area and force the guide wire in the desired direction. Blocking screws help to avoid axial malalignment during nail insertion. Interlocking of the nail with screws coming from different directions prevents secondary dislocation.

Keywords

Fractures Metaphysis Intramedullary nailing Reduction Interlocking 

Notes

Einhaltung ethischer Richtlinien

Interessenkonflikt

P. M. Rommens, R. Kuechle, A. Hofmann und S.-O. Dietz geben an, dass kein Interessenkonflikt besteht.

Dieser Beitrag beinhaltet keine von den Autoren durchgeführten Studien an Menschen oder Tieren.

Literatur

  1. 1.
    Afsari A, Liporace F, Lindvall E, Infante A Jr, Sagi HC, Haidukewych GJ (2010) Clamp-assisted reduction of high subtrochanteric fractures of the femur: surgical technique. J Bone Joint Surg Am 92(Suppl 1 Pt 2):217–225CrossRefGoogle Scholar
  2. 2.
    Apivatthakakul T, Phornphutkul C (2012) Percutaneous cerclage wiring for reduction of periprosthetic and difficult femoral fractures. A technical note. Injury 43(6):966–971CrossRefGoogle Scholar
  3. 3.
    Archdeacon MT, Wyrick JD (2006) Reduction plating for provisional fracture fixation. J Orthop Trauma 20(3):206–211CrossRefGoogle Scholar
  4. 4.
    Attal R, Hitendra D, Genelin K (2015) Distal tibia. In: Rommens P, Hessmann M (Hrsg) Intramedullary nailing. Springer, London, S 375–393Google Scholar
  5. 5.
    Baumgaertel F, Dahlen C, Stiletto R, Gotzen L (1994) Technique of using the AO-femoral distractor for femoral intramedullary nailing. J Orthop Trauma 8(4):315–321CrossRefGoogle Scholar
  6. 6.
    Cole JD, Ansel LJ (1994) Intramedullary nail and lag-screw fixation of proximal femur fractures. Operative technique and preliminary results. Orthop Rev Suppl:35–44PubMedGoogle Scholar
  7. 7.
    Eastman JG, Tseng SS, Lee MA, Yoo BJ (2010) The retropatellar portal as an alternative site for tibial nail insertion: a cadaveric study. J Orthop Trauma 24:659–664CrossRefGoogle Scholar
  8. 8.
    Forman JM, Urruela AM, Egol KA (2011) The percutaneous use of a pointed reduction clamp during intramedullary nailing of distal third tibial shaft fractures. Acta Orthop Belg 77(6):802–808PubMedGoogle Scholar
  9. 9.
    Georgiadis GM, Burgar AM (2001) Percutaneous skeletal joysticks for closed reduction of femoral shaft fractures during intramedullary nailing. J Orthop Trauma 15(8):570–571CrossRefGoogle Scholar
  10. 10.
    Habernek H (1991) Percutaneous cerclage wiring and interlocking nailing for treatment of torsional fractures of the tibia. Clin Orthop Relat Res 267:164–168Google Scholar
  11. 11.
    Jackson M, Topliss CJ, Atkins RM (2003) Fine wire frame-assisted intramedullary nailing of the tibia. J Orthop Trauma 17(3):222–224CrossRefGoogle Scholar
  12. 12.
    Jakma T, Reynders-Frederix P, Rajmohan R (2011) Insertion of intramedullary nails from the suprapatellar pouch for proximal tibial shaft fractures. A technical note. Acta Orthop Belg 77(6):834–837PubMedGoogle Scholar
  13. 13.
    Krettek C, Stephan C, Schandelmaier P, Richter M, Pape HC, Miclau T (1999) The use of Poller screws as blocking screws in stabilising tibial fractures treated with small diameter intramedullary nails. J Bone Joint Surg Br 81(6):963–968CrossRefGoogle Scholar
  14. 14.
    Krettek C, Gösling T (2015) Femur diaphysis. In: Rommens P, Hessmann M (Hrsg) Intramedullary nailing. Springer, London, S 245–316Google Scholar
  15. 15.
    McFerran MA, Johnson KD (1992) Intramedullary nailing of acute femoral shaft fractures without a fracture table: technique of using a femoral distractor. J Orthop Trauma 6(3):271–278CrossRefGoogle Scholar
  16. 16.
    McKee MD, Schemitsch EH, Waddell JP, Yoo D (1999) A prospective, randomized clinical trial comparing tibial nailing using fracture-table traction versus manual traction. J Orthop Trauma 13(7):463–469CrossRefGoogle Scholar
  17. 17.
    Moed BR, Watson JT (1994) Intramedullary nailing of the tibia without a fracture table: the transfixion pin distractor technique. J Orthop Trauma 8(3):195–202CrossRefGoogle Scholar
  18. 18.
    Müller T, Topp T, Kühne CA, Gebhart G, Ruchholtz S, Zettl R (2011) The benefit of wire cerclage stabilisation of the medial hinge in intramedullary nailing for the treatment of subtrochanteric femoral fractures: a biomechanical study. Int Orthop 35(8):1237–1243CrossRefGoogle Scholar
  19. 19.
    Noda M, Saegusa Y, Maeda T (2011) Does the location of the entry point affect the reduction of proximal humeral fractures? A cadaveric study. Injury 42(Suppl 4):S35–S38CrossRefGoogle Scholar
  20. 20.
    Ostrum RF, Marcantonio A, Marburger R (2005) A critical analysis of the eccentric starting point for trochanteric intramedullary femoral nailing. J Orthop Trauma 19(10):681–686CrossRefGoogle Scholar
  21. 21.
    Reynders-Frederix PA, Broos PL, Fabry G (1992) The use of a traction frame for intramedullary nailing of tibial fractures. Acta Orthop Belg 58(4):477–479PubMedGoogle Scholar
  22. 22.
    Roberts JW, Libet LA, Wolinsky PR (2012) Who is in danger? Impingement and penetration of the anterior cortex of the distal femur during intramedullary nailing of proximal femur fractures: preoperatively measurable risk factors. J Trauma Acute Care Surg 73(1):249–254CrossRefGoogle Scholar
  23. 23.
    Rohilla R, Singh R, Magu NK, Devgan A, Siwach R, Sangwan SS (2011) Simultaneous use of cannulated reamer and Schanz screw for closed intramedullary femoral nailing. ISRN Surg 2011:502408CrossRefGoogle Scholar
  24. 24.
    Rommens PM, El Attal R, Hansen M, Kuhn S (2011) Intramedullary nailing of proximal tibia fractures. Oper Orthop Traumatol 23(5):411–422CrossRefGoogle Scholar
  25. 25.
    Rommens PM, Hessmann MH (2015) Reduction techniques. In: Rommens P, Hessmann M (Hrsg) Intramedullary nailing. Springer, London, S 65–75Google Scholar
  26. 26.
    Rommens PM, Küchle R, Hofmann A, Hessmann MH (2017) Intramedullary nailing of metaphyseal fractures of lower extremity. Acta Chir Orthop Traumatol Cech 84(5):330–340PubMedGoogle Scholar
  27. 27.
    Sanders RW, DiPasquale TG, Jordan CJ, Arrington JA, Sagi HC (2014) Semiextended intramedullary nailing of the tibia using a suprapatellar approach: radiographic results and clinical outcomes at a minimum of 12 months follow-up. J Orthop Trauma 28(Suppl 8):S29–S39CrossRefGoogle Scholar
  28. 28.
    Shahulhameed A, Roberts CS, Ojike NI (2011) Technique for precise placement of poller screws with intramedullary nailing of metaphyseal fractures of the femur and the tibia. Injury 42(2):136–139CrossRefGoogle Scholar
  29. 29.
    Shezar A, Rosenberg N, Soudry M (2005) Technique for closed reduction of femoral shaft fracture using an external support device. Injury 36(3):450–453CrossRefGoogle Scholar
  30. 30.
    Stedtfeld HW, Mittlmeier T, Landgraf P, Ewert A (2004) The logic and clinical applications of blocking screws. J Bone Joint Surg Am 86-A(Suppl 2):17–25CrossRefGoogle Scholar
  31. 31.
    Stephen DJ, Kreder HJ, Schemitsch EH, Conlan LB, Wild L, McKee MD (2002) Femoral intramedullary nailing: comparison of fracture-table and manual traction. A prospective, randomized study. J Bone Joint Surg Am 84–A(9):1514–1521CrossRefGoogle Scholar
  32. 32.
    Tornetta P 3rd, Collins E (1996) Semiextended position of intramedullary nailing of the proximal tibia. Clin Orthop Relat Res 328:185–189CrossRefGoogle Scholar
  33. 33.
    Tscherne H, Haas N, Krettek C (1986) Intramedullary nailing combined with cerclage wiring in the treatment of fractures of the femoral shaft. Clin Orthop Relat Res 212:62–67Google Scholar

Copyright information

© Springer Medizin Verlag GmbH, ein Teil von Springer Nature 2018

Authors and Affiliations

  • P. M. Rommens
    • 1
    Email author
  • R. Kuechle
    • 1
  • A. Hofmann
    • 2
  • S.-O. Dietz
    • 1
  1. 1.Zentrum für Orthopädie und UnfallchirurgieUniversitätsmedizin der Johannes Gutenberg-UniversitätMainzDeutschland
  2. 2.Klinik für Unfallchirurgie und Orthopädie 1Westpfalz-Klinikum Standort I KaiserslauternKaiserslauternDeutschland

Personalised recommendations