Advertisement

The evolution of 3D imaging in orthopedic trauma care

Die Entwicklung der 3‑D-Bildgebung in der Versorgung orthopädischer Verletzungen

Abstract

Three-dimensional (3D) imaging can enhance trauma care by allowing better evaluation of bony detail and implant position compared to conventional fluoroscopy or x‑ray. Intraoperative 3D imaging further improves this evaluation by allowing any necessary revisions to be made in the operating room prior to the patient emerging from anesthesia. This revision, if necessary, better achieves the surgical goals and alleviates the stressful situation of obtaining postoperative 3D imaging, where the benefit of revision must be balanced against the cost and risk of returning to the operating room. Improved image volume, resolution, and software capability have allowed surgeons to obtain high-quality, wide field views of bony anatomy that can include the uninjured side as a comparison. In this paper, the evolution of intraoperative 3D imaging over the past 25 years is discussed.

Zusammenfassung

Durch dreidimensionale (3-D-)Bildgebung kann die Versorgung von Verletzungen verbessert werden, weil im Vergleich zur konventionellen Durchleuchtung oder Röntgenaufnahme eine genauere Beurteilung knöcherner Details und der Position von Implantaten möglich ist. Die intraoperative 3‑D-Bildgebung steigert diese Verbesserung noch, da sie notwendige Revisionen im Operationssaal ermöglicht, bevor der Patient aus der Narkose aufwacht. Mit einer solchen Revision, falls erforderlich, werden die Ziele des Eingriffs besser erreicht und die mit Stress verbundene Situation der Erlangung postoperativer 3‑D-Aufnahmen vermieden, bei der sowohl der Nutzen einer Revisionsoperation als auch die Kosten und Risiken einer Rückkehr in den Operationssaal abgewogen werden müssen. Verbesserungen im Bereich des Bildvolumens, der Auflösung und der Leistungsfähigkeit der Software ermöglichen es den Chirurgen, hochwertige, großflächige Darstellungen der knöchernen Anatomie zu erhalten, wozu auch die unverletzte Seite als Vergleich gehören kann. In der vorliegenden Arbeit wird die Entwicklung der intraoperativen 3‑D-Bildgebung im Lauf der letzten 25 Jahre erörtert.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. 1.

    Cunningham B, Jackson K, Ortega G (2014) Intraoperative CT in the assessment of posterior wall acetabular fracture stability. Orthopedics 37(4):e328–e331

  2. 2.

    Dikos GD, Heisler J, Choplin RH, Weber TG (2012) Normal tibiofibular relationships at the syndesmosis on axial CT imaging. J Orthop Trauma 26:433–438

  3. 3.

    Duwelius PJ, Van Allen J, Bray TJ, Nelson D (1992) Computed tomography-guided fixation of unstable posterior pelvic ring disruptions. J Trauma 6:420–426

  4. 4.

    Gardner MJ, Demetrakopoulos D, Briggs SM, Helfet DL, Lorich DG (2006) Malreduction of the tibiofibular syndesmosis in ankle fractures. Foot Ankle Int 27(10):788–792

  5. 5.

    Gay SB, Sistrom C, Wang G‑J, Kahler DM, Boman T, Goitz HT, McHugh N (1992) Percutaneous screw fixation of acetabular fractures with CT guidance: preliminary results of a new technique. AJR Am J Roentgenol 158(4):819–822

  6. 6.

    Hawi N, Suero EM, Liodakis E, Decker S, Krettek C, Citak M (2014) Intra-operative assessment of femoral antetorsion using Is-C 3D; a cadaver study. Injury 45(3):506–509

  7. 7.

    Hufner T, Stubig T, Citak M et al (2009) Utility of intraoperative three-dimensional imaging at the hip and knee joints with and without navigation. J Bone Joint Surg Am 91(Suppl 1):33–42

  8. 8.

    Kahler DM (2004) Image guidance: fluoroscopic navigation. Clin Orthop Rel Res 421:70–76

  9. 9.

    Kahler DM (2003) Percutaneous screw insertion for acetabular and sacral fractures. Tech Orthop 18(2):174–183

  10. 10.

    Marmor M, Hansen E, Han HK, Buckley J, Matityahu A (2011) Limitations of standard fluoroscopy in detecting rotational malreduction of the syndesmosis in an ankle fracture model. Foot Ankle Int 32(6):616–622

  11. 11.

    Mukhopadhyay S, Metcalfe A, Guha AR, Mohanty K, Hemmadi S, Lyons K, O’Doherty D (2011) Malreduction of syndesmosis; dare we consider the anatomical variation. Injury 42:1073–1076

  12. 12.

    Richter M, Geerling J, Zech S, Goesling T, Krettek C (2005) Intraoperative three-dimensional imaging with a motorized mobile C‑Arm (Siremobil Iso-C-3D) in foot and ankle trauma care. J Orthop Trauma 19(4):259–266

  13. 13.

    Richter PH, Yarboro SR, Kraus M, Gebhard F (2015) One year orthopaedic trauma experience using an advanced interdisciplinary hybrid operating room. Injury 46(Suppl 4):S129–S134

  14. 14.

    Sagi HC, Shah AR, Sanders RW (2012) The functional consequence of syndesmotic joint malreduction at a minimum 2‑year follow-up. J Orthop Trauma 26:439–443

  15. 15.

    Schnetzke M, Fuchs J, Vetter SY, Beisemann N, Keil H, Gruetzner PA, Franke J (2016) Intraoperative 3D imaging in the treatment of elbow fractures – a retrospective analysis of indications, intraoperative revision rates, and implications in 36 cases. BMC Med Imaging 16(1):24

  16. 16.

    Summers HD, Sinclair MK, Stover MD (2013) A reliable method for intraoperative evaluation of syndesmotic reduction. J Orthop Trauma 27:196–200

  17. 17.

    Von Recum J, Wendl K, Vock B, Gruetzner PA, Franke J (2012) Intraoperative 3D C‑arm imaging. State of the art. Unfallchirurg 115:196–201

  18. 18.

    Weening B, Bhandari M (2005) Predictors of functional outcome following transsyndesmotic screw fixation of ankle fractures. J Orthop Trauma 19:102–108

  19. 19.

    Wicky S, Blaser PF, Blanc CH, Leyvraz PF, Schnyder P, Meuli RA (2000) Comparison between standard radiography and spiral CT with 3D reconstruction in the evaluation, classification and management of tibial plateau fractures. Eur Radiol 10(8):1227–1232

Download references

Author information

Correspondence to S. R. Yarboro MD.

Ethics declarations

Conflict of interest

S.R. Yarboro, P.H. Richter, and D.M. Kahler state that they have no competing interest.

This article does not contain any studies with human participants or animals performed by any of the authors.

The supplement containing this article is not sponsored by industry.

Additional information

Editors

P. Grützner, Ludwigshafen

F. Gebhard, Ulm

Electronic Supplementary Material

Demonstration of the Artis Zeego and an additional case demonstration

Video 1:

Demonstration of the Artis Zeego and an additional case demonstration

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yarboro, S.R., Richter, P.H. & Kahler, D.M. The evolution of 3D imaging in orthopedic trauma care. Unfallchirurg 120, 5–9 (2017). https://doi.org/10.1007/s00113-016-0226-9

Download citation

Keywords

  • Revision surgery
  • Imaging, three-dimensional
  • Computed tomography
  • Fluoroscopy
  • Hybrid operating room

Schlüsselwörter

  • Revisionseingriff
  • Dreidimensionale Bildgebung
  • Computertomographie
  • Durchleuchtung
  • Hybridoperationssaal