Advertisement

Management des Schädel-Hirn-Traumas im Kindesalter

  • M. LehnerEmail author
  • S. Deininger
  • D. Wendling-Keim
Leitthema
  • 83 Downloads

Zusammenfassung

Unfälle sind die häufigste Ursache für eine stationäre Aufnahme im Kindes- und Jugendalter. Etwa 90 % der tödlichen Unfallfolgen im Kindesalter sind durch das Schädel-Hirn-Trauma (SHT) bedingt. Die Einteilung erfolgt gemäß der an Kinder adaptierten Glasgow Coma Scale (GCS) und wird in 3 Grade (leicht – mittel – schwer) unterteilt. Die Behandlung des mittelgradigen und des schweren SHT muss bereits präklinisch unter Vermeidung von Hypotension und Hypoxie beginnen, da diese beiden Parameter das Outcome wesentlich beeinflussen. Bei diesen Patienten sollte eine Einweisung durch den Notarzt in ein Traumazentrum für Kinder erfolgen.

In etwa 85 % der Fälle wird ein leichtes SHT diagnostiziert. Dennoch können in dieser Gruppe klinisch entscheidende – und damit z. T. operativ zu versorgende – intrakranielle Verletzungen vorkommen. Es gilt nun, diese Patienten innerhalb des Beobachtungszeitraums von 48 h zu diagnostizieren. Im Kindesalter sollte die stationäre Überwachung vor der (primären) bildgebenden kranialen Computertomographie (cCT) stehen, um nicht unnötige Strahlung bei einem mit hoher Wahrscheinlichkeit unauffälligen Befund zu applizieren. Mittlerweile sind gut validierte Algorithmen publiziert (PECARN Rules), nach denen sich die Indikation zur kranialen schnittbildgebenden Untersuchung richten kann.

Beim schweren SHT im Kindesalter steht neben einer zielgerichteten und raschen Patientenversorgung im Schockraum, einschließlich neuroradiologischer Diagnostik, die Überwachung auf der Kinderintensivstation im Vordergrund. Kinder neigen zur Ausbildung von posttraumatischen Hirnödemen; diese gilt es zunächst, medikamentös zu behandeln. Die aktuellen Handlungsempfehlungen der Brain Trauma Foundation werden diskutiert.

Schlüsselwörter

Diagnostische Bildgebung Glasgow Coma Scale Hirndruck Patientenüberwachung Schockraum 

Management of traumatic brain injury in childhood

Abstract

Accidents are the leading cause of hospitalization in childhood and adolescence. Approximately 90% of fatal accidents in childhood are associated with traumatic brain injury (TBI). The classification is based on the Glasgow coma scale (GCS) adapted to children and is divided into three grades, mild, moderate and severe. The treatment of moderate and severe TBI must already start in the preclinical setting to avoid hypotension and hypoxia, as these two parameters significantly influence the outcome. In these patients, admission to a level 1 trauma center for children should be carried out by the emergency physician. 85% of patients are diagnosed as having mild TBI. Nevertheless, in this group clinically important intracranial injuries requiring surgery can also occur. It is generally necessary to diagnose the injuries of these patients within an observational period of 48 h. In childhood, inpatient monitoring should be carried out before (primary) cranial computed tomography (CT) imaging to avoid unnecessary exposure to radiation and most probably an inconspicuous cranial CT scan. Meanwhile, well-validated algorithms have been published (PECARN rules), according to which the indications for cranial slice imaging investigations are oriented. In cases of severe TBI, in addition to a targeted and rapid patient treatment in the trauma room including neuroradiological diagnostics, monitoring of children is predominantly carried out in the intensive care unit. Children are prone to develop posttraumatic cerebral edema, which first requires medication treatment. The current recommendations of the Brain Trauma Foundation for treatment are discussed.

Keywords

Diagnostic imaging Glasgow Coma Scale Intracranial pressure Patient monitoring Trauma room 

Notes

Einhaltung ethischer Richtlinien

Interessenkonflikt

M. Lehner, S. Deininger und D. Wendling-Keim geben an, dass kein Interessenkonflikt besteht.

Für diesen Beitrag wurden von den Autoren keine Studien an Menschen oder Tieren durchgeführt. Für die aufgeführten Studien gelten die jeweils dort angegebenen ethischen Richtlinien.

Supplementary material

112_2019_770_MOESM1_ESM.pdf (125 kb)
Merkblatt für die Eltern

Literatur

  1. 1.
    Bundesarbeitsgemeinschaft mehr Sicherheit für Kinder e. V. Bonn. 2016Google Scholar
  2. 2.
    Vernet O, Lutz N, Rilliet N, Schlaepfer R (2004) Betreuung des kindlichen Schädelhirntraumas. Paediatrica 15(4):43–47Google Scholar
  3. 3.
    Kuppermann N et al (2009) Identification of children at very low risk of clinically-important brain injuries after head trauma: a prospective cohort study. Lancet 374(9696):1160–1170CrossRefGoogle Scholar
  4. 4.
    Palchak MJ, Holmes JF, Kuppermann N (2009) Clinician judgment versus a decision rule for identifying children at risk of traumatic brain injury on computed tomography after blunt head trauma. Pediatr Emerg Care 25(2):61–65CrossRefGoogle Scholar
  5. 5.
    Holmes JF et al (2009) Guardian availability in children evaluated in the emergency department for blunt head trauma. Acad Emerg Med 16(1):15–20CrossRefGoogle Scholar
  6. 6.
    Nigrovic LE et al (2012) Prevalence of clinically important traumatic brain injuries in children with minor blunt head trauma and isolated severe injury mechanisms. Arch Pediatr Adolesc Med 166(4):356–361CrossRefGoogle Scholar
  7. 7.
    Nigrovic LE et al (2011) The effect of observation on cranial computed tomography utilization for children after blunt head trauma. Pediatr Electron Pages 127(6):1067–1073Google Scholar
  8. 8.
    Nigrovic LE et al (2015) Quality improvement effort to reduce cranial CTs for children with minor blunt head trauma. Pediatr Electron Pages 136(1):e227–e233Google Scholar
  9. 9.
    Babl FE et al (2017) Accuracy of PECARN, CATCH, and CHALICE head injury decision rules in children: a prospective cohort study. Lancet 389(10087):2393–2402CrossRefGoogle Scholar
  10. 10.
    Leitlinie (2011) Das Schädel-Hirn-Trauma im Kindesalter. AWMF onlineGoogle Scholar
  11. 11.
    Lehner M, Krohn C (2013) Leichtes Schädel-Hirn-Trauma im Kindesalter. Monatsschr Kinderheilkd 161:49–56CrossRefGoogle Scholar
  12. 12.
    Kristman VL et al (2014) Methodological issues and research recommendations for prognosis after mild traumatic brain injury: results of the International Collaboration on Mild Traumatic Brain Injury Prognosis. Arch Phys Med Rehabil 95(3 Suppl):S265–S277CrossRefGoogle Scholar
  13. 13.
    Emami P et al (2017) Impact of Glasgow Coma Scale score and pupil parameters on mortality rate and outcome in pediatric and adult severe traumatic brain injury: a retrospective, multicenter cohort study. J Neurosurg 126(3):760–767CrossRefGoogle Scholar
  14. 14.
    Lehner M et al (2018) iTRAPS—Interdisziplinary Trauma Rooma Algorithm in Pediatric Surgery. Notfall Rettungsmed 21(2):90–99CrossRefGoogle Scholar
  15. 15.
    Chiaretti A et al (2002) The impact of initial management on the outcome of children with severe head injury. Childs Nerv Syst 18(1–2):54–60CrossRefGoogle Scholar
  16. 16.
    Chiaretti A et al (2002) Prognostic factors and outcome of children with severe head injury: an 8‑year experience. Childs Nerv Syst 18(3–4):129–136CrossRefGoogle Scholar
  17. 17.
    Spaite DW et al (2017) The effect of combined out-of-hospital hypotension and hypoxia on mortality in major traumatic brain injury. Ann Emerg Med 69(1):62–72CrossRefGoogle Scholar
  18. 18.
    Spaite DW et al (2017) Association of out-of-hospital hypotension depth and duration with traumatic brain injury mortality. Ann Emerg Med 70(4):522e1–530CrossRefGoogle Scholar
  19. 19.
    Muhm M et al (2013) Assessment of prehospital injury severity in children: challenge for emergency physicians. Anaesthesist 62(5):380–388CrossRefGoogle Scholar
  20. 20.
    Pearce MS et al (2012) Radiation exposure from CT scans in childhood and subsequent risk of leukaemia and brain tumours: a retrospective cohort study. Lancet 380(9840):499–505CrossRefGoogle Scholar
  21. 21.
    Miglioretti DL et al (2013) The use of computed tomography in pediatrics and the associated radiation exposure and estimated cancer risk. JAMA Pediatr 167(8):700–707CrossRefGoogle Scholar
  22. 22.
    Schonfeld D, Fitz BM, Nigrovic LE (2013) Effect of the duration of emergency department observation on computed tomography use in children with minor blunt head trauma. Ann Emerg Med 62(6):597–603CrossRefGoogle Scholar
  23. 23.
    Hennelly KE et al (2013) Pediatric traumatic brain injury and radiation risks: a clinical decision analysis. J Pediatr 162(2):392–397CrossRefGoogle Scholar
  24. 24.
    Klora, Zeidler, Bassler et al (2019) Medicine open 98:28(e16320)Google Scholar
  25. 25.
    Nigrovic LE et al (2013) Nurse and physician agreement in the assessment of minor blunt head trauma. Pediatr Electron Pages 132(3):e689–94Google Scholar
  26. 26.
    Osmond MH et al (2010) CATCH: a clinical decision rule for the use of computed tomography in children with minor head injury. CMAJ 182(4):341–348CrossRefGoogle Scholar
  27. 27.
    Dunning J et al (2006) Derivation of the children’s head injury algorithm for the prediction of important clinical events decision rule for head injury in children. Arch Dis Child 91(11):885–891CrossRefGoogle Scholar
  28. 28.
    Lyttle MD et al (2013) Applicability of the CATCH, CHALICE and PECARN paediatric head injury clinical decision rules: pilot data from a single Australian centre. Emerg Med J 30(10):790–794CrossRefGoogle Scholar
  29. 29.
    Lyttle MD et al (2012) Comparing CATCH, CHALICE and PECARN clinical decision rules for paediatric head injuries. Emerg Med J 29(10):785–794CrossRefGoogle Scholar
  30. 30.
    Schutzman SA et al (2001) Evaluation and management of children younger than two years old with apparently minor head trauma: proposed guidelines. Pediatr Electron Pages 107(5):983–993Google Scholar
  31. 31.
    Easter JS et al (2014) Comparison of PECARN, CATCH, and CHALICE rules for children with minor head injury: a prospective cohort study. Ann Emerg Med 64(2):145–52, 152 e1–5CrossRefGoogle Scholar
  32. 32.
    Choosing WiselyPediatrics, A.A.o. (Hrsg) (2013) http://www.choosingwisely.org/doctor-patient-lists/american-academy-of-pediatrics/. Zugegriffen: 06.09.2019
  33. 33.
    Wendling-Keim DS et al (2017) Ambulatory or inpatient management of mild TBI in children: a post-concussion analysis. Pediatr Surg Int 33(2):249–261CrossRefGoogle Scholar
  34. 34.
    Badawy MK et al (2017) Prevalence of brain injuries and recurrence of seizures in children with posttraumatic seizures. Acad Emerg Med 24(5):595–605CrossRefGoogle Scholar
  35. 35.
    Lee LK et al (2014) Isolated loss of consciousness in children with minor blunt head trauma. JAMA Pediatr 168(9):837–843CrossRefGoogle Scholar
  36. 36.
    Dayan PS et al (2014) Risk of traumatic brain injuries in children younger than 24 months with isolated scalp hematomas. Ann Emerg Med 64(2):153–162CrossRefGoogle Scholar
  37. 37.
    Burns EC et al (2016) Scalp hematoma characteristics associated with Intracranial injury in pediatric minor head injury. Acad Emerg Med 23(5):576–583CrossRefGoogle Scholar
  38. 38.
    Erlichman DB et al (2010) Association between linear skull fractures and intracranial hemorrhage in children with minor head trauma. Pediatr Radiol 40(8):1375–1379CrossRefGoogle Scholar
  39. 39.
    Da Dalt L et al (2007) Characteristics of children with vomiting after minor head trauma: a case-control study. J Pediatr 150(3):274–278CrossRefGoogle Scholar
  40. 40.
    Dayan PS et al (2014) Association of traumatic brain injuries with vomiting in children with blunt head trauma. Ann Emerg Med 63(6):657–665CrossRefGoogle Scholar
  41. 41.
    Dayan PS et al (2015) Headache in traumatic brain injuries from blunt head trauma. Pediatr Electron Pages 135(3):504–512Google Scholar
  42. 42.
    Irvine A, Babul S, Goldman RD (2017) Return to learn after concussion in children. Can Fam Physician 63(11):859–862Google Scholar
  43. 43.
    Bernard CO et al (2016) Predictors of post-concussive symptoms in young children: injury versus non-injury related factors. J Int Neuropsychol Soc 22(8):793–803CrossRefGoogle Scholar
  44. 44.
    O’Brien MJ et al (2017) Sport-related concussions: symptom recurrence after return to exercise. Orthop J Sports Med 5(10):2325967117732516Google Scholar
  45. 45.
    Petzold A et al (2003) Cerebrospinal fluid (CSF) and serum S100B: release and wash-out pattern. Brain Res Bull 61(3):281–285CrossRefGoogle Scholar
  46. 46.
    Townend W et al (2006) Rapid elimination of protein S‑100B from serum after minor head trauma. J Neurotrauma 23(2):149–155CrossRefGoogle Scholar
  47. 47.
    Oris C et al (2018) The biomarker S100B and mild traumatic brain injury: a meta-analysis. Pediatrics 141(6):e20180037CrossRefGoogle Scholar
  48. 48.
    Bouvier D et al (2019) Assessment of the advantage of the serum S100B protein biomonitoring in the management of paediatric mild traumatic brain injury-PROS100B: protocol of a multicentre unblinded stepped wedge cluster randomised trial. BMJ Open 9(5):e27365CrossRefGoogle Scholar
  49. 49.
    Lehner M et al (2018) Reduction of treatment time for children in the trauma room care : impact of implementation of an interdisciplinary trauma room concept (iTRAP(S)). Anaesthesist 67(12):914–921CrossRefGoogle Scholar
  50. 50.
    Wyen H et al (2010) Prehospital and early clinical care of infants, children, and teenagers compared to an adult cohort : analysis of 2,961 children in comparison to 21,435 adult patients from the trauma registry of DGU in a 15-year period. Eur J Trauma Emerg Surg 36(4):300–307CrossRefGoogle Scholar
  51. 51.
    Murphy S et al (2017) Tripartite stratification of the Glasgow coma scale in children with severe traumatic brain injury and mortality: an analysis from a multi-center comparative effectiveness study. J Neurotrauma 34(14):2220CrossRefGoogle Scholar
  52. 52.
    Miller Ferguson N et al (2017) Abusive head trauma and mortality-an analysis from an international comparative effectiveness study of children with severe traumatic brain injury. Crit Care Med 45(8):1398–1407CrossRefGoogle Scholar
  53. 53.
    Bell MJ et al (2017) Challenges and opportunities for pediatric severe TBI-review of the evidence and exploring a way forward. Childs Nerv Syst 33(10):1663–1667CrossRefGoogle Scholar
  54. 54.
    Kochanek PM et al (2019) Guidelines for the management of pediatric severe traumatic brain injury, third edition: update of the brain trauma foundation guidelines, executive summary. Neurosurgery 84(6):1169–1178CrossRefGoogle Scholar
  55. 55.
    Allen BB et al (2014) Age-specific cerebral perfusion pressure thresholds and survival in children and adolescents with severe traumatic brain injury. Pediatr Crit Care Med 15(1):62–70CrossRefGoogle Scholar
  56. 56.
    Shein SL et al (2016) Effectiveness of pharmacological therapies for Intracranial hypertension in children with severe traumatic brain injury—results from an automated data collection system time-synched to drug administration. Pediatr Crit Care Med 17(3):236–245CrossRefGoogle Scholar
  57. 57.
    Ketharanathan N et al (2017) Analgosedation in paediatric severe traumatic brain injury (TBI): practice, pitfalls and possibilities. Childs Nerv Syst 33(10):1703–1710CrossRefGoogle Scholar
  58. 58.
    Guilliams K, Wainwright MS (2016) Pathophysiology and management of moderate and severe traumatic brain injury in children. J Child Neurol 31(1):35–45CrossRefGoogle Scholar
  59. 59.
    Mtaweh H, Bell MJ (2015) Management of pediatric traumatic brain injury. Curr Treat Options Neurol 17(5):348CrossRefGoogle Scholar
  60. 60.
    Mellion SA et al (2013) High-dose barbiturates for refractory intracranial hypertension in children with severe traumatic brain injury. Pediatr Crit Care Med 14(3):239–247CrossRefGoogle Scholar
  61. 61.
    Ruzas CM et al (2017) EEG monitoring and antiepileptic drugs in children with severe TBI. Neurocrit Care 26(2):256–266CrossRefGoogle Scholar
  62. 62.
    Beca J et al (2015) Hypothermia for traumatic brain injury in children—a phase II randomized controlled trial. Crit Care Med 43(7):1458–1466CrossRefGoogle Scholar
  63. 63.
    Pechmann A et al (2015) Decompressive craniectomy after severe traumatic brain injury in children: complications and outcome. Neuropediatrics 46(1):5–12CrossRefGoogle Scholar
  64. 64.
    Prasad GL et al (2015) Surgical results of decompressive craniectomy in very young children: a level one trauma centre experience from India. Brain Inj 29(13–14):1717–1724CrossRefGoogle Scholar
  65. 65.
    Ferrazzano PA et al (2019) Use of magnetic resonance imaging in severe pediatric traumatic brain injury: assessment of current practice. J Neurosurg Pediatr p:1–9Google Scholar

Copyright information

© Springer Medizin Verlag GmbH, ein Teil von Springer Nature 2019

Authors and Affiliations

  1. 1.Kinderchirurgische KlinikKinderspital Luzern, Luzerner KantonsspitalLuzernSchweiz
  2. 2.Sektion KinderneurochirurgieNeurochirurgische Klinik, Universität UlmUlmDeutschland
  3. 3.Kinderchirurgische KlinikDr. von Hauner’sches Kinderspital, Ludwig-Maximilians-UniversitätMünchenDeutschland

Personalised recommendations