Skip to main content
Log in

Infektionen und Immuntherapie

Adoptiver Transfer antigenspezifischer T-Zellen bei Infektionen nach allogener Stammzelltransplantation

Infections after allogeneic stem cell transplantation

Treatment by adoptive transfer of antigen-specific T cells

  • Leitthema
  • Published:
Monatsschrift Kinderheilkunde Aims and scope Submit manuscript

Zusammenfassung

Die allogene Stammzelltransplantation (SZT) führt zu einer transienten Immunsuppression, in der Virus- und Pilzinfektionen lebensbedrohlich verlaufen können. Verbesserte SZT-Regimes und Supportivmaßnahmen konnten die Infektionsraten senken, für die Kontrolle der Infektionen ist jedoch eine funktionelle T-Zell-Antwort essenziell. Adeno-, Zytomegalie- und Epstein-Barr-Viren reaktivieren meist endogen, während Aspergillusinfektionen v. a. exogen entstehen. Die Transfusion erregerspezifischer T-Zellen eines gesunden Spenders in einen erkrankten Empfänger stellt eine viel versprechende neue Therapieform dar, um adaptive Immunität auf den Empfänger zu übertragen. Eine Isolierung spezifischer T-Zellen ist notwendig, um alloreaktive T-Zellen zu depletieren und damit das Risiko einer komplikationsreichen Graft-versus-Host-Erkrankung zu minimieren. Adoptiver T-Zell-Transfer wurde bisher in aufwändigen Protokollen bei Virusinfektionen nach allogener SZT durchgeführt. Aufbauend auf aktuellen Grundlagenerkenntnissen zielen neue Methoden auf eine prompte Verfügbarkeit passender T-Zell-Präparate ab. Darüber hinaus bleiben das Verständnis und die gezielte Manipulation der T-Zell-Antwort als Therapieverfahren eine Herausforderung.

Abstract

Allogeneic stem cell transplantation (SCT) can expose patients to a transient but marked immunosuppression, during which viral and fungal infections are an important cause of morbidity and mortality. Control of these infections ultimately depends on restoring adequate T-cell immunity. Most viral infections after SCT are caused by the endogenous reactivation of persistent pathogens such as adenovirus (ADV), cytomegalovirus (CMV), and Epstein-Barr-virus (EBV), whereas invasive infections due to Aspergillus spp. are mostly exogenous. Cellular immunotherapy is an attractive approach to enable immune protection of the host. The isolation of pathogen-specific T cells from a healthy donor and their infusion into a recipient is done by a procedure known as adoptive T-cell transfer. The separation of pathogen-specific T cells is necessary to deplete alloreactive T cells and avoid graft-versus-host disease. Adoptive T-cell transfer has been performed after allogeneic SCT in many patients with CMV, EBV, and ADV infections using time- and labour-consuming protocols. Based on basic research, new immunotherapeutic protocols aim at a broader and faster availability of adoptive T-cell transfer. However, the manipulation of antigen-specific T-cell responses as a treatment approach remains an ongoing challenge.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3

Literatur

  1. Adhikary D, Behrends U, Moosmann A et al (2006) Control of Epstein-Barr virus infection in vitro by T helper cells specific for virion glycoproteins. J Exp Med 203(4):995–1006

    Article  CAS  PubMed  Google Scholar 

  2. Adhikary D, Behrends U, Boerschmann H et al (2007) Immunodominance of lytic cycle antigens in Epstein-Barr virus-specific CD4+ T cell preparations for therapy. PLoS One 2(7):e583

    Article  PubMed  CAS  Google Scholar 

  3. Adhikary D, Behrends U, Feederle R et al (2008) Standardized and highly efficient expansion of Epstein-Barr virus-specific CD4+ T cells by using virus-like particles. J Virol 82(8):3903–3911

    Article  CAS  PubMed  Google Scholar 

  4. André-Schmutz I, Le Deist F, Hacein-Bey S et al. (2002) Donor T lymphocyte infusion following ex vivo depletion of donor anti-host reactivity by a specific anti-interleukin-2 receptor P55 chain immunotoxin. Transplant Proc 34(7):2927–2928

    Article  PubMed  Google Scholar 

  5. Bahceci E, Epperson D, Douek DC et al (2003) Early reconstitution of the T-cell repertoire after non-myeloablative peripheral blood stem cell transplantation is from post-thymic T-cell expansion and is unaffected by graft-versus-host disease or mixed chimaerism. Br J Haematol 122(6):934–943

    Article  PubMed  Google Scholar 

  6. Beck O, Topp MS, Koehl U et al (2006) Generation of highly purified and functionally active human TH1 cells against Aspergillus fumigatus. Blood 107(6):2562–2569

    Article  CAS  PubMed  Google Scholar 

  7. Bevan MJ (2004) Helping the CD8(+) T-cell response. Nat Rev Immunol 4(8):595–602

    Article  CAS  PubMed  Google Scholar 

  8. Boeckh M, Nichols WG (2004) The impact of cytomegalovirus serostatus of donor and recipient before hematopoietic stem cell transplantation in the era of antiviral prophylaxis and preemptive therapy. Blood 103(6):2003–2008

    Article  CAS  PubMed  Google Scholar 

  9. Bordigoni P, Carret AS, Venard V et al (2001) Treatment of adenovirus infections in patients undergoing allogeneic hematopoietic stem cell transplantation. Clin Infect Dis 32(9):1290–1297

    Article  CAS  PubMed  Google Scholar 

  10. Bozza S, Clavaud C, Giovannini G et al. (2009) Immune sensing of Aspergillus fumigatus proteins, glycolipids, and polysaccharides and the impact on Th immunity and vaccination. J Immunol 183:2407−2414

    Article  CAS  PubMed  Google Scholar 

  11. Casalegno-Garduno R, Schmitt A, Yao J et al (2010) Multimer technologies for detection and adoptive transfer of antigen-specific T cells. Cancer Immunol Immunother 59(2):195–202

    Article  CAS  PubMed  Google Scholar 

  12. Chakrabarti S, Collingham KE, Stevens RH et al (2000) Isolation of viruses from stools in stem cell transplant recipients: a prospective surveillance study. Bone Marrow Transplant 25(3):277–282

    Article  CAS  PubMed  Google Scholar 

  13. Chakrabarti S, Mautner V, Osman H et al (2002) Adenovirus infections following allogeneic stem cell transplantation: incidence and outcome in relation to graft manipulation, immunosuppression, and immune recovery. Blood 100(5):1619–1627

    Article  CAS  PubMed  Google Scholar 

  14. Einsele H, Roosnek E, Rufer N et al (2002) Infusion of cytomegalovirus (CMV)-specific T cells for the treatment of CMV infection not responding to antiviral chemotherapy. Blood 99(11):3916–3922

    Article  CAS  PubMed  Google Scholar 

  15. Feuchtinger T, Lang P, Hamprecht K et al (2004) Isolation and expansion of human adenovirus specific CD4+ and CD8+ T-cells according to IFN-gamma secretion for adjuvant immunotherapy. Exp Hematol 32(3):282–289

    Article  CAS  PubMed  Google Scholar 

  16. Feuchtinger T, Lucke J, Hamprecht K et al (2005) Detection of adenovirus-specific T cells in children with adenovirus infection after allogeneic stem cell transplantation. Br J Haematol 128(4):503–509

    Article  PubMed  Google Scholar 

  17. Feuchtinger T, Matthes-Martin S, Richard C et al (2006) Safe adoptive transfer of virus-specific T-cell immunity for the treatment of systemic adenovirus infection after allogeneic stem cell transplantation. Br J Haematol 134(1):64–76

    Article  PubMed  Google Scholar 

  18. Feuchtinger T, Lang P, Handgretinger R (2007) Adenovirus infection after allogeneic stem cell transplantation. Leuk Lymphoma 48(2):244–255

    Article  CAS  PubMed  Google Scholar 

  19. Feuchtinger T, Joachim S, Bethge W et al (2008) Adoptive T-cell transfer of pp65-specific T-cells as a treatment of cytomegalovirus viraemia after allogeneic stem cell transplantation. Bone Marrow Transplant 41:S262–S263

    Google Scholar 

  20. Flomenberg P, Piaskowski V, Truitt RL, Casper JT (1995) Characterization of human proliferative T cell responses to adenovirus. J Infect Dis 171(5):1090–1096

    CAS  PubMed  Google Scholar 

  21. Gerson SL, Talbot GH, Hurwitz S et al (1984) Prolonged granulocytopenia: the major risk factor for invasive pulmonary aspergillosis in patients with acute leukemia. Ann Intern Med 100(3):345–351

    CAS  PubMed  Google Scholar 

  22. Gohring K, Feuchtinger T, Mikeler E et al. (2009) Dynamics of the emergence of a human cytomegalovirus UL97 mutant strain conferring ganciclovir resistance in a pediatric stem-cell transplant recipient. J Mol Diagn 11:364−368

    Article  PubMed  CAS  Google Scholar 

  23. Gottschalk S, Heslop HE, Rooney CM (2005) Adoptive immunotherapy for EBV-associated malignancies. Leuk Lymphoma 46(1):1–10

    Article  CAS  PubMed  Google Scholar 

  24. Handgretinger R, Lang P, Schumm M et al (2001) Immunological aspects of haploidentical stem cell transplantation in children. Ann N Y Acad Sci 938:340–357

    Article  CAS  PubMed  Google Scholar 

  25. Haque T, Wilkie GM, Jones MM et al (2007) Allogeneic cytotoxic T-cell therapy for EBV-positive posttransplantation lymphoproliferative disease: results of a phase 2 multicenter clinical trial. Blood 110(4):1123–1131

    Article  CAS  PubMed  Google Scholar 

  26. Hebart H, Einsele H (2004) Specific infectious complications after stem cell transplantation. Support Care Cancer 12(2):80–85

    Article  PubMed  Google Scholar 

  27. Heemskerk B, Veltrop-Duits LA, Vreeswijk T van et al (2003) Extensive cross-reactivity of CD4+ adenovirus-specific T cells: implications for immunotherapy and gene therapy. J Virol 77(11):6562–6566

    Article  CAS  PubMed  Google Scholar 

  28. Hoffman JA, Shah AJ, Ross LA, Kapoor N (2001) Adenoviral infections and a prospective trial of cidofovir in pediatric hematopoietic stem cell transplantation. Biol Blood Marrow Transplant 7(7):388–394

    Article  CAS  PubMed  Google Scholar 

  29. Lang P, Handgretinger R, Niethammer D et al (2003) Transplantation of highly purified CD34+ progenitor cells from unrelated donors in pediatric leukemia. Blood 101(4):1630–1636

    Article  CAS  PubMed  Google Scholar 

  30. Lee TC, Savoldo B, Barshes NR et al (2006) Use of cytokine polymorphisms and Epstein-Barr virus viral load to predict development of post-transplant lymphoproliferative disorder in paediatric liver transplant recipients. Clin Transplant 20(3):389–393

    Article  PubMed  Google Scholar 

  31. Leen AM, Myers GD, Sili U et al (2006) Monoculture-derived T lymphocytes specific for multiple viruses expand and produce clinically relevant effects in immunocompromised individuals. Nat Med 12(10):1160–1166

    Article  CAS  PubMed  Google Scholar 

  32. Lewin SR, Heller G, Zhang L et al (2002) Direct evidence for new T-cell generation by patients after either T-cell-depleted or unmodified allogeneic hematopoietic stem cell transplantations. Blood 100(6):2235–2242

    CAS  PubMed  Google Scholar 

  33. Lin SJ, Schranz J, Teutsch SM (2001) Aspergillosis case-fatality rate: systematic review of the literature. Clin Infect Dis 32(3):358–366

    Article  CAS  PubMed  Google Scholar 

  34. Lion T, Baumgartinger R, Watzinger F et al (2003) Molecular monitoring of adenovirus in peripheral blood after allogeneic bone marrow transplantation permits early diagnosis of disseminated disease. Blood 102(3):1114–1120

    Article  CAS  PubMed  Google Scholar 

  35. Ljungman P, Deliliers GL, Platzbecker U et al (2001) Cidofovir for cytomegalovirus infection and disease in allogeneic stem cell transplant recipients. The infectious diseases working party of the European Group for Blood and Marrow Transplantation. Blood 97(2):388–392

    Article  CAS  PubMed  Google Scholar 

  36. Ljungman P, Brand R, Einsele H et al. (2003) Donor CMV serologic status and outcome of CMV-seropositive recipients after unrelated donor stem cell transplantation: an EBMT megafile analysis. Blood 102:4255−4260

    Article  CAS  PubMed  Google Scholar 

  37. Meij P, Esser JW van, Niesters HG et al (2003) Impaired recovery of Epstein-Barr virus (EBV)-specific CD8+ T lymphocytes after partially T-depleted allogeneic stem cell transplantation may identify patients at very high risk for progressive EBV reactivation and lymphoproliferative disease. Blood 101(11):4290–4297

    Article  CAS  PubMed  Google Scholar 

  38. Milosevic S, Behrends U, Adhikary D, Mautner J (2006) Identification of major histocompatibility complex class II-restricted antigens and epitopes of the Epstein-Barr virus by a novel bacterial expression cloning approach. J Virol 80(21):10357–10364

    Article  CAS  PubMed  Google Scholar 

  39. Mohty M, Jacot W, Faucher C et al (2003) Infectious complications following allogeneic HLA-identical sibling transplantation with antithymocyte globulin-based reduced intensity preparative regimen. Leukemia 17(11):2168–2177

    Article  CAS  PubMed  Google Scholar 

  40. Moss P, Rickinson A (2005) Cellular immunotherapy for viral infection after HSC transplantation. Nat Rev Immunol 5(1):9–20

    Article  CAS  PubMed  Google Scholar 

  41. Papadopoulos EB, Ladanyi M, Emanuel D et al (1994) Infusions of donor leukocytes to treat Epstein-Barr virus-associated lymphoproliferative disorders after allogeneic bone marrow transplantation. N Engl J Med 330(17):1185–1191

    Article  CAS  PubMed  Google Scholar 

  42. Peggs KS, Verfuerth S, Pizzey A et al (2003) Adoptive cellular therapy for early cytomegalovirus infection after allogeneic stem-cell transplantation with virus-specific T-cell lines. Lancet 362(9393):1375–1377

    Article  PubMed  Google Scholar 

  43. Perruccio K, Tosti A, Burchielli E et al (2005) Transferring functional immune responses to pathogens after haploidentical hematopoietic transplantation. Blood 106(13):4397–4406

    Article  CAS  PubMed  Google Scholar 

  44. Rauser G, Einsele H, Sinzger C et al (2004) Rapid generation of combined CMV-specific CD4+ and CD8+ T-cell lines for adoptive transfer into recipients of allogeneic stem cell transplants. Blood 103(9):3565–3572

    Article  CAS  PubMed  Google Scholar 

  45. Riddell SR, Watanabe KS, Goodrich JM et al (1992) Restoration of viral immunity in immunodeficient humans by the adoptive transfer of T cell clones. Science 257(5067):238–241

    Article  CAS  PubMed  Google Scholar 

  46. Rooney CM, Smith CA, Ng CY et al (1995) Use of gene-modified virus-specific T lymphocytes to control Epstein-Barr-virus-related lymphoproliferation. Lancet 345(8941):9–13

    Article  CAS  PubMed  Google Scholar 

  47. Rooney CM, Smith CA, Ng CY et al (1998) Infusion of cytotoxic T cells for the prevention and treatment of Epstein-Barr virus-induced lymphoma in allogeneic transplant recipients. Blood 92(5):1549–1555

    CAS  PubMed  Google Scholar 

  48. Sebelin-Wulf K, Nguyen TD, Oertel S et al (2007) Quantitative analysis of EBV-specific CD4/CD8 T cell numbers, absolute CD4/CD8 T cell numbers and EBV load in solid organ transplant recipients with PLTD. Transpl Immunol 17(3):203–210

    Article  CAS  PubMed  Google Scholar 

  49. Serangeli C, Bicanic O, Scheible MH et al (2009) Ex vivo detection of adenovirus specific CD4(+) T-cell responses to HLA-DR-epitopes of the hexon protein show a contracted specificity of T(HELPER) cells following stem cell transplantation. Virology Dec 2. [Epub ahead of print]

  50. Smith CA, Woodruff LS, Kitchingman GR, Rooney CM (1996) Adenovirus-pulsed dendritic cells stimulate human virus-specific T-cell responses in vitro. J Virol 70(10):6733–6740

    CAS  PubMed  Google Scholar 

  51. Smith CA, Woodruff LS, Rooney C, Kitchingman GR (1998) Extensive cross-reactivity of adenovirus-specific cytotoxic T cells. Hum Gene Ther 9(10):1419–1427

    Article  CAS  PubMed  Google Scholar 

  52. Sun JC, Williams MA, Bevan MJ (2004) CD4+ T cells are required for the maintenance, not programming, of memory CD8+ T cells after acute infection. Nat Immunol 5(9):927–933

    Article  CAS  PubMed  Google Scholar 

  53. Tramsen L, Beck O, Schuster FR et al (2007) Generation and characterization of anti-Candida T cells as potential immunotherapy in patients with Candida infection after allogeneic hematopoietic stem-cell transplant. J Infect Dis 196(3):485–492

    Article  CAS  PubMed  Google Scholar 

  54. Tramsen L, Koehl U, Tonn T et al (2009) Clinical-scale generation of human anti-Aspergillus T cells for adoptive immunotherapy. Bone Marrow Transplant 43(1):13–19

    Article  CAS  PubMed  Google Scholar 

  55. Walter EA, Greenberg PD, Gilbert MJ et al (1995) Reconstitution of cellular immunity against cytomegalovirus in recipients of allogeneic bone marrow by transfer of T-cell clones from the donor. N Engl J Med 333(16):1038–1044

    Article  CAS  PubMed  Google Scholar 

Download references

Interessenkonflikt

Der korrespondierende Autor gibt an, dass kein Interessenkonflikt besteht.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Feuchtinger.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Feuchtinger, T., Behrends, U. & Lehrnbecher, T. Infektionen und Immuntherapie. Monatsschr Kinderheilkd 158, 246–253 (2010). https://doi.org/10.1007/s00112-009-2142-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00112-009-2142-3

Schlüsselwörter

Keywords

Navigation