Skip to main content
Log in

Genetik in der Pädiatrie als Interaktion zwischen Klinik und Labor

Genetics in pediatrics as an interaction between clinic and laboratory

  • Leitthema
  • Published:
Monatsschrift Kinderheilkunde Zeitschrift für Kinder- und Jugendmedizin Aims and scope Submit manuscript

Zusammenfassung

Auch in der Pädiatrie wird die Genetik für die Definition von Krankheiten zunehmend wichtiger. Die rasch akkumulierenden molekularbiologischen Erkenntnisse erfordern laufend eine Anpassung der Zuordnung von mit bestimmten genetischen Merkmalen assoziierten Krankheitsbildern. Ein grundlegendes Wissen über genetische Konzepte und die Funktion des Genoms ist eine wichtige Voraussetzung des Verständnisses der normalen und pathologischen Entwicklung des menschlichen Organismus sowie dessen Krankheiten. Molekulardiagnostische Untersuchungen sind nicht nur integraler Bestandteil der Diagnose und Differenzialdiagnose, sondern werden zunehmend zur Definition von genetischen Varianten eingesetzt, welche die Entwicklung von Krankheiten voraussagen sollen. Nicht zuletzt ermöglichen die Erkenntnisse der genetischen Grundlagenforschung auch die Entwicklung völlig neuer Therapiekonzepte, welche die Gesundheit und Lebensqualität der betroffenen Patienten wesentlich verbessern. Dem erwünschten medizinischen Nutzen stehen jedoch zunehmend die vielfältigen ethischen, rechtlichen und sozialen Probleme gegenüber, welche sich aus den gewonnenen Informationen ergeben.

Abstract

As in many other areas of medicine, pediatric diseases are increasingly defined and classified according to their genetic basis. Moreover, the steadily growing body of information requires continuous adjustment to the classification of diseases that are due to particular gene defects. A basic knowledge of genetic concepts and genome function is thus an essential prerequisite for the understanding of the normal and pathological development of the human organism as well as its diseases. Molecular tests are not only an integral part of diagnosis and differential diagnosis, but they are also increasingly used to define genetic variants that are supposed to predict the development of diseases. Finally, the insights obtained from genetic research also enable the development of completely novel therapeutic concepts to improve patient health and quality of life. However, these desirable medical benefits and advantages are pitted against the manifold ethical, legal and social implications arising from the information obtained, intentionally or unintentionally, about the genetic peculiarities of a particular individual.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Literatur

  1. Aase JM (1992) Dysmorphologic diagnosis for the pediatric practitioner. Pediatr Clin North Am 39: 135–156

    PubMed  CAS  Google Scholar 

  2. Ahn JW, Ogilvie CM, Welch A et al. (2007) Detection of subtelomere imbalance using MLPA: validation, development of an analysis protocol, and application in a diagnostic centre. BMC Med Genet 8: 9

    Article  PubMed  CAS  Google Scholar 

  3. Ameziane N, Errami A, Leveille F et al. (2008) Genetic subtyping of Fanconi anemia by comprehensive mutation screening. Hum Mutat 29: 159–166

    Article  PubMed  CAS  Google Scholar 

  4. Barabasi AL, Oltvai ZN (2004) Network biology: understanding the cell’s functional organization. Nat Rev Genet 5: 101–113

    Article  PubMed  CAS  Google Scholar 

  5. Barfield RC, Kodish E (2006) Pediatric ethics in the age of molecular medicine. Pediatr Clin North Am 53: 639–648

    Article  PubMed  Google Scholar 

  6. Bernhardt BA, Pyeritz RE (1992) The organization and delivery of clinical genetics services. Pediatr Clin North Am 39: 1–12

    PubMed  CAS  Google Scholar 

  7. Biesecker LG (1998) Lumping and splitting: molecular biology in the genetics clinic. Clin Genet 53: 3–7

    Article  PubMed  CAS  Google Scholar 

  8. Childs B, Valle D (2000) Genetics, biology and disease. Annu Rev Genomics Hum Genet 1: 1–19

    Article  PubMed  CAS  Google Scholar 

  9. Cipriano LE, Rupar CA, Zaric GS (2007) The cost-effectiveness of expanding newborn screening for up to 21 inherited metabolic disorders using tandem mass spectrometry: results from a decision-analytic model. Value Health 10: 83–97

    Article  PubMed  Google Scholar 

  10. Costa T, Scriver CR, Childs B (1985) The effect of Mendelian disease on human health: a measurement. Am J Med Genet 21: 231–242

    Article  PubMed  CAS  Google Scholar 

  11. Dipple KM, McCabe ER (2000) Phenotypes of patients with „simple“ Mendelian disorders are complex traits: thresholds, modifiers, and systems dynamics. Am J Hum Genet 66: 1729–1735

    Article  PubMed  CAS  Google Scholar 

  12. Dolen G, Osterweil E, Rao BS et al. (2007) Correction of fragile X syndrome in mice. Neuron 56: 955–962

    Article  PubMed  CAS  Google Scholar 

  13. Donnai D, Read AP (2003) How clinicians add to knowledge of development. Lancet 362: 477–484

    Article  PubMed  Google Scholar 

  14. Enklaar T, Zabel BU, Prawitt D (2006) Beckwith-Wiedemann syndrome: multiple molecular mechanisms. Expert Rev Mol Med 8: 1–19

    PubMed  Google Scholar 

  15. Feuk L, Carson AR, Scherer SW (2006) Structural variation in the human genome. Nat Rev Genet 7: 85–97

    Article  PubMed  CAS  Google Scholar 

  16. Francke U, Ochs HD, Martinville B de et al. (1985) Minor Xp21 chromosome deletion in a male associated with expression of Duchenne muscular dystrophy, chronic granulomatous disease, retinitis pigmentosa, and McLeod syndrome. Am J Hum Genet 37: 250–267

    PubMed  CAS  Google Scholar 

  17. Goh KI, Cusick ME, Valle D et al. (2007) The human disease network. Proc Natl Acad Sci USA 104: 8685–8690

    Article  PubMed  CAS  Google Scholar 

  18. Hall JG, Powers EK, McLlvaine RT et al. (1978) The frequency and financial burden of genetic disease in a pediatric hospital. Am J Med Genet 1: 417–436

    Article  PubMed  CAS  Google Scholar 

  19. Hennekam RC (2007) What to call a syndrome. Am J Med Genet 143: 1021–1024

    Article  Google Scholar 

  20. Katsanis N, Ansley SJ, Badano JL et al. (2001) Triallelic inheritance in Bardet-Biedl syndrome, a Mendelian recessive disorder. Science 293: 2256–2259

    Article  PubMed  CAS  Google Scholar 

  21. Kirchhoff M, Bisgaard AM, Bryndorf T et al. (2007) MLPA analysis for a panel of syndromes with mental retardation reveals imbalances in 5.8% of patients with mental retardation and dysmorphic features, including duplications of the Sotos syndrome and Williams-Beuren syndrome regions. Eur J Med Genet 50: 33–42

    Article  PubMed  Google Scholar 

  22. Krantz ID, Spinner NB (2007) Novel microdeletion syndromes. Am J Med Genet 145: 323–326

    Article  Google Scholar 

  23. Kriek M, Knijnenburg J, White SJ et al. (2007) Diagnosis of genetic abnormalities in developmentally delayed patients: a new strategy combining MLPA and array-CGH. Am J Med Genet 143: 610–614

    Article  PubMed  Google Scholar 

  24. Lose EJ, Robin NH (2007) Caring for adults with pediatric genetic diseases: a growing need. Curr Opin Pediatr 19: 611–612

    Article  PubMed  Google Scholar 

  25. Madrigal I, Rodriguez-Revenga L et al. (2007) MLPA as first screening method for the detection of microduplications and microdeletions in patients with X-linked mental retardation. Genet Med 9: 117–122

    Article  PubMed  CAS  Google Scholar 

  26. Oldridge M, Lunt PW, Zackai EH et al. (1997) Genotype-phenotype correlation for nucleotide substitutions in the IgII–IgIII linker of FGFR2. Hum Mol Genet 6: 137–143

    Article  PubMed  CAS  Google Scholar 

  27. Rimoin DL, Hirschhorn K (2004) A history of medical genetics in pediatrics. Pediatr Res 56: 150–159

    Article  PubMed  Google Scholar 

  28. Rosas-Blum E, Shirsat P, Leiner M (2007) Communicating genetic information: a difficult challenge for future pediatricians. BMC Med Educ 7: 17

    Article  PubMed  Google Scholar 

  29. Rosen A, Wallenstein S, McGovern MM (2002) Attitudes of pediatric residents toward ethical issues associated with genetic testing in children. Pediatrics 110: 360–363

    Article  PubMed  Google Scholar 

  30. Rump P, Zeegers MP, Van Essen AJ (2005) Tumor risk in Beckwith-Wiedemann syndrome: a review and meta-analysis. Am J Med Genet 136: 95–104

    Article  CAS  PubMed  Google Scholar 

  31. Scherer SW, Lee C, Birney E et al. (2007) Challenges and standards in integrating surveys of structural variation. Nat Genet 39: S7–15

    Article  PubMed  CAS  Google Scholar 

  32. Scriver CR (2007) The PAH gene, phenylketonuria, and a paradigm shift. Hum Mutat 28: 831–845

    Article  PubMed  CAS  Google Scholar 

  33. Shaffer LG, Bejjani BA, Torchia B et al. (2007) The identification of microdeletion syndromes and other chromosome abnormalities: cytogenetic methods of the past, new technologies for the future. Am J Med Genet 145: 335–345

    Article  Google Scholar 

  34. Steinlein OK (2004) Genetik der idiopathischen Epilepsien. Monatssch Kinderheilkd 152: 1211–1216

    Article  Google Scholar 

  35. Stoetzel C, Muller J, Laurier V et al. (2007) Identification of a novel BBS gene (BBS12) highlights the major role of a vertebrate-specific branch of chaperonin-related proteins in Bardet-Biedl syndrome. Am J Hum Genet 80: 1–11

    Article  PubMed  CAS  Google Scholar 

  36. Stojanov S, Kastner DL (2005) Familial autoinflammatory diseases: genetics, pathogenesis and treatment. Curr Opin Rheumatol 17: 586–599

    Article  PubMed  CAS  Google Scholar 

  37. Taylor MR, Edwards JG, Ku L (2006) Lost in transition: challenges in the expanding field of adult genetics. Am J Med Genet 142: 294–303

    Article  Google Scholar 

  38. Temple LK, McLeod RS, Gallinger S et al. (2001) Essays on science and society. Defining disease in the genomics era. Science 293: 807–808

    Article  PubMed  CAS  Google Scholar 

  39. Wolf U (1997) Identical mutations and phenotypic variation. Hum Genet 100: 305–321

    Article  PubMed  CAS  Google Scholar 

  40. Yoon PW, Olney RS, Khoury MJ et al. (1997) Contribution of birth defects and genetic diseases to pediatric hospitalizations. A population-based study. Arch Pediatr Adolesc Med 151: 1096–1103

    PubMed  CAS  Google Scholar 

Download references

Interessenkonflikt

Der korrespondierende Autor gibt an, dass kein Interessenkonflikt besteht.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O.A. Haas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Haas, O., Bodamer , O. Genetik in der Pädiatrie als Interaktion zwischen Klinik und Labor. Monatsschr Kinderheilkd 156, 323–329 (2008). https://doi.org/10.1007/s00112-008-1681-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00112-008-1681-3

Schlüsselwörter

Keywords

Navigation