Advertisement

Deletion of FHL2 in fibroblasts attenuates fibroblasts activation and kidney fibrosis via restraining TGF-β1-induced Wnt/β-catenin signaling

  • Ying Duan
  • Yumei Qiu
  • Xiaowen Huang
  • Chunsun Dai
  • Junwei Yang
  • Weichun HeEmail author
Original Article
  • 73 Downloads

Abstract

Four-and-a-half LIM domains protein 2 (FHL2) has been proposed involving in β-catenin activity. We previously reported that FHL2 mediates TGF-β1-induced tubular epithelial-to-mesenchymal transition through activating Wnt/β-catenin signaling. However, the potential role and mechanism for FHL2 in TGF-β1-induced fibroblast activation and kidney fibrosis remains unknown. Here, we initially observed higher levels of FHL2 expression in fibrotic kidneys from both patients and mice, especially in α-smooth muscle actin (α-SMA)-positive cells in the interstitium. In cultured interstitial fibroblasts, FHL2 expression was induced by TGF-β1. Knockdown of FHL2 remarkably suppressed TGF-β1-induced α-SMA, type I collagen, and fibronectin expression, while overexpression of FHL2 was sufficient to activate fibroblasts. In mice, fibroblast-specific deletion of FHL2 diminished renal induction of α-SMA, type I collagen, and fibronectin and interstitial extracellular matrix deposition at 2 weeks after ureteral obstruction. We next investigated Wnt/β-catenin activity and found that β-catenin was activated in most FHL2-positive cells in renal interstitium from mice with obstructive nephropathy. In vitro, TGF-β1 induced a physical interaction between FHL2 and β-catenin, especially in the nucleus. Downregulation of FHL2 inhibited TGF-β1-induced active β-catenin upregulation, β-catenin nuclear translocation, and β-catenin-mediated transcription, whereas overexpression of FHL2 was able to activate Wnt/β-catenin signaling. FHL2 overexpression-induced β-catenin-mediated gene transcription could be hindered by ICG-001, but FHL2 overexpression-induced upregulation of active β-catenin could not be. Collectively, this study reveals that the signal regulatory effect of FHL2 on β-catenin plays an important role in TGF-β1-induced fibroblast activation and kidney fibrosis.

Keywords

FHL2 β-Catenin TGF-β1 Fibroblast Kidney fibrosis 

Notes

Author contributions

HW designed the study and wrote the paper. DY, QY and HX performed the experiments. HW, DY, and QY prepared all figures and analyzed the results. DC and YJ provided valuable suggestions and comments on the study design. All authors approved the final version of the manuscript.

Funding information

This work was supported by National Natural Science Foundation of China (31571169/C110201 and 81170659/H0509) and Key Medical Talent in Science & Education Health Project of Jiangsu Province (ZDRCC2016006) to HW.

Compliance with ethical standards

Conflict of interest

The authors declared that they have no conflict of interest.

Ethical approval

Animal protocol was approved by the Institutional Animal Care and Use Committee at the Nanjing Medical University. Study involving human tissues was approved by the Ethics Committee at the Second Affiliated Hospital of Nanjing Medical University.

Supplementary material

109_2019_1870_MOESM1_ESM.docx (15 kb)
ESM 1 (DOCX 14 kb)
109_2019_1870_Fig9_ESM.png (634 kb)
ESM 2

(PNG 633 kb)

109_2019_1870_MOESM2_ESM.tif (11.4 mb)
High Resolution Image (TIF 11639 kb)

References

  1. 1.
    Tampe D, Zeisberg M (2014) Potential approaches to reverse or repair renal fibrosis. Nat Rev Nephrol 10(4):226–237PubMedCrossRefPubMedCentralGoogle Scholar
  2. 2.
    Lovisa S, Zeisberg M, Kalluri R (2016) Partial epithelial-to-mesenchymal transition and other new mechanisms of kidney fibrosis. Trends Endocrinol Metab 27(10):681–695PubMedCrossRefPubMedCentralGoogle Scholar
  3. 3.
    Sun YB, Qu X, Caruana G, Li J (2016) The origin of renal fibroblasts/myofibroblasts and the signals that trigger fibrosis. Differentiation 92(3):102–107PubMedCrossRefPubMedCentralGoogle Scholar
  4. 4.
    Lebleu VS, Taduri G, O'connell J, Teng Y, Cooke VG, Woda C et al (2013) Origin and function of myofibroblasts in kidney fibrosis. Nat Med 19(8):1047–1053PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Mack M, Yanagita M (2015) Origin of myofibroblasts and cellular events triggering fibrosis. Kidney Int 87(2):297–307PubMedCrossRefPubMedCentralGoogle Scholar
  6. 6.
    Li J, Ren J, Liu X, Jiang L, He W, Yuan W et al (2015) Rictor/mTORC2 signaling mediates TGFbeta1-induced fibroblast activation and kidney fibrosis. Kidney Int 88(3):515–527PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Zhou D, Li Y, Zhou L, Tan RJ, Xiao L, Liang M et al (2014) Sonic hedgehog is a novel tubule-derived growth factor for interstitial fibroblasts after kidney injury. J Am Soc Nephrol 25(10):2187–2200PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Tan RJ, Zhou D, Liu Y (2016) Signaling crosstalk between tubular epithelial cells and interstitial fibroblasts after kidney injury. Kidney Dis (Basel) 2(3):136–144CrossRefGoogle Scholar
  9. 9.
    He W, Dai C (2015) Key fibrogenic signaling. Curr Pathobiol Rep 3(2):183–192PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Meng XM, Tang PM, Li J, Lan HY (2015) TGF-beta/Smad signaling in renal fibrosis. Front Physiol 6:82PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Wang D, Dai C, Li Y, Liu Y (2011) Canonical Wnt/beta-catenin signaling mediates transforming growth factor-beta1-driven podocyte injury and proteinuria. Kidney Int 80(11):1159–1169PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Tan RJ, Zhou D, Zhou L, Liu Y (2014) Wnt/beta-catenin signaling and kidney fibrosis. Kidney Int Suppl 4(1):84–90CrossRefGoogle Scholar
  13. 13.
    Wang Y, Zhou CJ, Liu Y (2018) Wnt signaling in kidney development and disease. Prog Mol Biol Transl Sci 153:181–207PubMedCrossRefGoogle Scholar
  14. 14.
    Zhou D, Tan RJ, Fu H, Liu Y (2016) Wnt/beta-catenin signaling in kidney injury and repair: a double-edged sword. Lab Investig 96(2):156–167PubMedCrossRefGoogle Scholar
  15. 15.
    Valenta T, Hausmann G, Basler K (2012) The many faces and functions of beta-catenin. EMBO J 31(12):2714–2736PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Henderson WR Jr, Chi EY, Ye X, Nguyen C, Tien YT, Zhou B et al (2010) Inhibition of Wnt/beta-catenin/CREB binding protein (CBP) signaling reverses pulmonary fibrosis. Proc Natl Acad Sci U S A 107(32):14309–14314PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Hao S, He W, Li Y, Ding H, Hou Y, Nie J, Hou FF, Kahn M, Liu Y (2011) Targeted inhibition of beta-catenin/CBP signaling ameliorates renal interstitial fibrosis. J Am Soc Nephrol 22(9):1642–1653PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Nusse R, Clevers H (2017) Wnt/beta-catenin signaling, disease, and emerging therapeutic modalities. Cell 169(6):985–999PubMedCrossRefPubMedCentralGoogle Scholar
  19. 19.
    Steinhart Z, Angers S (2018) Wnt signaling in development and tissue homeostasis. Development 145(11)PubMedCrossRefGoogle Scholar
  20. 20.
    Wiese KE, Nusse R, Van Amerongen R (2018) Wnt signalling: conquering complexity. Development 145(12)PubMedCrossRefPubMedCentralGoogle Scholar
  21. 21.
    He W, Dai C, Li Y, Zeng G, Monga SP, Liu Y (2009) Wnt/beta-catenin signaling promotes renal interstitial fibrosis. J Am Soc Nephrol 20(4):765–776PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Dai C, Stolz DB, Kiss LP, Monga SP, Holzman LB, Liu Y (2009) Wnt/beta-catenin signaling promotes podocyte dysfunction and albuminuria. J Am Soc Nephrol 20(9):1997–2008PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Kawakami T, Ren S, Duffield JS (2013) Wnt signalling in kidney diseases: dual roles in renal injury and repair. J Pathol 229(2):221–231PubMedCrossRefPubMedCentralGoogle Scholar
  24. 24.
    Feng Y, Ren J, Gui Y, Wei W, Shu B, Lu Q et al (2018) Wnt/beta-catenin-promoted macrophage alternative activation contributes to kidney fibrosis. J Am Soc Nephrol 29(1):182–193PubMedCrossRefPubMedCentralGoogle Scholar
  25. 25.
    Zuo Y, Liu Y (2018) New insights into the role and mechanism of Wnt/beta-catenin signalling in kidney fibrosis. Nephrology (Carlton) 23 Suppl 4:38-43PubMedCrossRefPubMedCentralGoogle Scholar
  26. 26.
    Xiao L, Zhou D, Tan RJ, Fu H, Zhou L, Hou FF, Liu Y (2016) Sustained activation of Wnt/beta-catenin signaling drives AKI to CKD progression. J Am Soc Nephrol 27(6):1727–1740PubMedCrossRefPubMedCentralGoogle Scholar
  27. 27.
    Cao CY, Mok SW, Cheng VW, Tsui SK (2015) The FHL2 regulation in the transcriptional circuitry of human cancers. Gene 572(1):1–7PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Zheng Q, Zhao Y (2007) The diverse biofunctions of LIM domain proteins: determined by subcellular localization and protein-protein interaction. Biol Cell 99(9):489–502PubMedCrossRefPubMedCentralGoogle Scholar
  29. 29.
    Tran MK, Kurakula K, Koenis DS, De Vries CJ (2016) Protein-protein interactions of the LIM-only protein FHL2 and functional implication of the interactions relevant in cardiovascular disease. Biochim Biophys Acta 1863(2):219–228PubMedCrossRefPubMedCentralGoogle Scholar
  30. 30.
    Cai T, Sun D, Duan Y, Qiu Y, Dai C, Yang J, He W (2018) FHL2 promotes tubular epithelial-to-mesenchymal transition through modulating beta-catenin signalling. J Cell Mol Med 22(3):1684–1695PubMedCrossRefPubMedCentralGoogle Scholar
  31. 31.
    Li SY, Huang PH, Tarng DC, Lin TP, Yang WC, Chang YH, Yang AH, Lin CC, Yang MH, Chen JW et al (2015) Four-and-a-half LIM domains protein 2 is a coactivator of Wnt signaling in diabetic kidney disease. J Am Soc Nephrol 26(12):3072–3084PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Liu Y (2011) Cellular and molecular mechanisms of renal fibrosis. Nat Rev Nephrol 7(12):684–696PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Falke LL, Gholizadeh S, Goldschmeding R, Kok RJ, Nguyen TQ (2015) Diverse origins of the myofibroblast-implications for kidney fibrosis. Nat Rev Nephrol 11(4):233–244PubMedCrossRefPubMedCentralGoogle Scholar
  34. 34.
    Johannessen M, Moller S, Hansen T, Moens U, Van Ghelue M (2006) The multifunctional roles of the four-and-a-half-LIM only protein FHL2. Cell Mol Life Sci 63(3):268–284PubMedCrossRefPubMedCentralGoogle Scholar
  35. 35.
    Labalette C, Renard CA, Neuveut C, Buendia MA, Wei Y (2004) Interaction and functional cooperation between the LIM protein FHL2, CBP/p300, and beta-catenin. Mol Cell Biol 24(24):10689–10702PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Wei Y, Renard CA, Labalette C, Wu Y, Levy L, Neuveut C et al (2003) Identification of the LIM protein FHL2 as a coactivator of beta-catenin. J Biol Chem 278(7):5188–5194PubMedCrossRefPubMedCentralGoogle Scholar
  37. 37.
    Zhao Y, Masiello D, Mcmillian M, Nguyen C, Wu Y, Melendez E et al (2016) CBP/catenin antagonist safely eliminates drug-resistant leukemia-initiating cells. Oncogene 35(28):3705–3717PubMedCrossRefPubMedCentralGoogle Scholar
  38. 38.
    Zhang W, Wang J, Zou B, Sardet C, Li J, Lam CS et al (2011) Four and a half LIM protein 2 (FHL2) negatively regulates the transcription of E-cadherin through interaction with Snail1. Eur J Cancer 47(1):121–130PubMedCrossRefPubMedCentralGoogle Scholar
  39. 39.
    Lopez-Novoa JM, Nieto MA (2009) Inflammation and EMT: an alliance towards organ fibrosis and cancer progression. EMBO Mol Med 1(6–7):303–314PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Dzialo E, Tkacz K, Blyszczuk P (2018) Crosstalk between the TGF-beta and WNT signalling pathways during cardiac fibrogenesis. Acta Biochim Pol 65(3):341–349PubMedCrossRefPubMedCentralGoogle Scholar
  41. 41.
    Akhmetshina A, Palumbo K, Dees C, Bergmann C, Venalis P, Zerr P et al (2012) Activation of canonical Wnt signalling is required for TGF-beta-mediated fibrosis. Nat Commun 3:735PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Zhou B, Liu Y, Kahn M, Ann DK, Han A, Wang H, Nguyen C, Flodby P, Zhong Q, Krishnaveni MS, Liebler JM, Minoo P, Crandall ED, Borok Z (2012) Interactions between beta-catenin and transforming growth factor-beta signaling pathways mediate epithelial-mesenchymal transition and are dependent on the transcriptional co-activator cAMP-response element-binding protein (CREB)-binding protein (CBP). J Biol Chem 287(10):7026–7038PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Gross SR, Sin CG, Barraclough R, Rudland PS (2014) Joining S100 proteins and migration: for better or for worse, in sickness and in health. Cell Mol Life Sci 71(9):1551–1579PubMedCrossRefPubMedCentralGoogle Scholar
  44. 44.
    Choi JH, Zhong X, McAlpine W, Liao TC, Zhang D, Fang B et al (2019) LMBR1L regulates lymphopoiesis through Wnt/β-catenin signaling. Science 364(6440). Pii: eaau0812Google Scholar
  45. 45.
    Tan K, Xie X, Shi W, Miao L, Dong X, Yang W et al (2019) Deficiency of canonical Wnt/β-catenin signalling in hepatic dendritic cells triggers autoimmune hepatitis. Liver Int [Epub ahead of print] Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2020

Authors and Affiliations

  1. 1.Center for Kidney Disease, Second Affiliated HospitalNanjing Medical UniversityNanjingChina
  2. 2.Department of Blood Purification Center, Nanjing First HospitalNanjing Medical UniversityNanjingChina

Personalised recommendations