Journal of Molecular Medicine

, Volume 98, Issue 1, pp 97–110 | Cite as

Selective protection of murine cerebral Gi/o-proteins from inactivation by parenterally injected pertussis toxin

  • Salvador Castaneda Vega
  • Veronika Leiss
  • Roland Piekorz
  • Carsten Calaminus
  • Katja Pexa
  • Marta Vuozzo
  • Andreas M. Schmid
  • Vasudharani Devanathan
  • Christian Kesenheimer
  • Bernd J. Pichler
  • Sandra Beer-Hammer
  • Bernd NürnbergEmail author
Original Article


Pertussis toxin (PTX) is a potent virulence factor in patients suffering from whooping cough, but in its detoxified version, it is applied for vaccination. It is thought to contribute to the pathology of the disease including various CNS malfunctions. Based on its enzymatic activity, PTX disrupts GPCR-dependent signaling by modifying the α-subunit of heterotrimeric Gi/o-proteins. It is also extensively used as a research tool to study neuronal functions in vivo and in vitro. However, data demonstrating the penetration of PTX from the blood into the brain are missing. Here, we examined the Gαi/o-modifying activity of PTX in murine brains after its parenteral application. Ex vivo biodistribution analysis of [124I]-PTX displayed poor distribution to the brain while relatively high concentrations were visible in the pancreas. PTX affected CNS and endocrine functions of the pancreas as shown by open-field and glucose tolerance tests, respectively. However, while pancreatic islet Gαi/o-proteins were modified, their neuronal counterparts in brain tissue were resistant towards PTX as indicated by different autoradiographic and immunoblot SDS-PAGE analyses. In contrast, PTX easily modified brain Gαi/o-proteins ex vivo. An attempt to increase BBB permeability by application of hypertonic mannitol did not show PTX activity on neuronal G proteins. Consistent with these findings, in vivo MRI analysis did not point to an increased blood-brain barrier (BBB) permeability following PTX treatment. Our data demonstrate that the CNS is protected from PTX. Thus, we hypothesize that the BBB hinders PTX to penetrate into the CNS and to deliver its enzymatic activity to brain Gαi/o-proteins.

Key messages

  • i.p. applied PTX is poorly retained in the brain while reaches high concentration in the pancreas.

  • Pancreatic islet Gαi/o- but not cerebral Gαi/o-proteins are modified by i.p. administered PTX.

  • i/o-proteins from isolated cerebral cell membranes were easily modified by PTX ex vivo.

  • CNS is protected from i.p. administered PTX.

  • PTX does not permeabilize the BBB.


Pertussis toxin/PTX G-proteins Biodistribution CNS Blood-brain barrier 



Blood-brain barrier


Body weight


Central nervous system




Guanine nucleotide exchange factor

G proteins

Guanine nucleotide–binding proteins


G protein–coupled receptors


Injected dose




Magnetic resonance imaging


Phenylmethanesulfonyl fluoride


Pertussis toxin


Sodium dodecyl sulfate polyacrylamide gel electrophoresis


White blood cells


Wild type



The authors would like to thank the following people for their assistance in this research: Maren Harant, Daniel Bukala, Renate Riehle, and Sandra Schwegmann.

Funding information

This work was supported by grants of the Deutsche Forschungsgemeinschaft (DFG; NU 53/9-2 to B.N. and V.L. and NU 53/13-1 to B.N.), Deutscher Akademischer Austauschdienst (DAAD), Else Kröner-Fresenius, and the Werner Siemens Foundation.

Compliance with ethical standards

Animal studies were approved by the local ethics committees (Regierungspräsidium Düsseldorf (50.05-230-45/04, 8.87- and Tübingen (PH10/13, PH1/11, PH4/19), which follow the 2010/63/EU Directive.

Conflict of interest

The authors declare that they have no conflicts of interest.

Supplementary material

109_2019_1854_MOESM1_ESM.jpg (205 kb)
ESM 1 (JPG 205 kb)
109_2019_1854_MOESM2_ESM.jpg (148 kb)
ESM 2 (JPG 148 kb)
109_2019_1854_MOESM3_ESM.jpg (129 kb)
ESM 3 (JPG 129 kb)
109_2019_1854_MOESM4_ESM.jpg (247 kb)
ESM 4 (JPG 246 kb)
109_2019_1854_MOESM5_ESM.jpg (2.2 mb)
ESM 5 (JPG 2248 kb)
109_2019_1854_MOESM6_ESM.jpg (2.6 mb)
ESM 6 (JPG 2635 kb)
109_2019_1854_MOESM7_ESM.jpg (468 kb)
ESM 7 (JPG 467 kb)
109_2019_1854_MOESM8_ESM.jpg (121 kb)
ESM 8 (JPG 120 kb)
109_2019_1854_MOESM9_ESM.jpg (273 kb)
ESM 9 (JPG 273 kb)
109_2019_1854_MOESM10_ESM.jpg (128 kb)
ESM 10 (JPG 128 kb)
109_2019_1854_MOESM11_ESM.jpg (76 kb)
ESM 11 (JPG 75 kb)
109_2019_1854_MOESM12_ESM.jpg (2 mb)
ESM 12 (JPG 2015 kb)
109_2019_1854_MOESM13_ESM.jpg (2 mb)
ESM 13 (JPG 2012 kb)
109_2019_1854_MOESM14_ESM.jpg (2.3 mb)
ESM 14 (JPG 2329 kb)
109_2019_1854_MOESM15_ESM.jpg (979 kb)
ESM 15 (JPG 979 kb)
109_2019_1854_MOESM16_ESM.jpg (31 kb)
ESM 16 (JPG 30 kb)
109_2019_1854_MOESM17_ESM.jpg (250 kb)
ESM 17 (JPG 249 kb)
109_2019_1854_MOESM18_ESM.docx (18 kb)
ESM 18 (DOCX 17.6 kb)


  1. 1.
    Locht C, Coutte L, Mielcarek N (2011) The ins and outs of pertussis toxin. FEBS J 278(23):4668–4682PubMedGoogle Scholar
  2. 2.
    Gill DM (1982) Bacterial toxins: a table of lethal amounts. Microbiol Rev 46(1):86–94PubMedPubMedCentralGoogle Scholar
  3. 3.
    Melvin JA, Scheller EV, Miller JF, Cotter PA (2014) Bordetella pertussis pathogenesis: current and future challenges. Nat Rev Microbiol 12(4):274–288PubMedPubMedCentralGoogle Scholar
  4. 4.
    RKI (2017) Workshop Bericht: Drei Jahre bundesweite Keuchhusten-Meldepflicht Epidemiologisches Bulletin (21)Google Scholar
  5. 5.
    Chen Z, He Q (2017) Immune persistence after pertussis vaccination. Hum Vaccin Immunother 13(4):744–756PubMedPubMedCentralGoogle Scholar
  6. 6.
    Scanlon K, Skerry C, Carbonetti N (2019) Association of pertussis toxin with severe pertussis disease. Toxins (Basel) 11(7). PubMedCentralGoogle Scholar
  7. 7.
    Carbonetti NH (2015) Contribution of pertussis toxin to the pathogenesis of pertussis disease. Pathog Dis 73(8):ftv073PubMedPubMedCentralGoogle Scholar
  8. 8.
    Nürnberg B (2000) Pertussis toxin as a pharmacological tool. Bacterial protein toxins, Springer, pp 187–206Google Scholar
  9. 9.
    Nürnberg B, Spicher K, Harhammer R, Bosserhoff A, Frank R, Hilz H, Schultz G (1994) Purification of a novel G-protein alpha 0-subtype from mammalian brain. Biochem J 300(Pt 2):387–394PubMedPubMedCentralGoogle Scholar
  10. 10.
    Devanathan V, Hagedorn I, Kohler D, Pexa K, Cherpokova D, Kraft P, Singh M, Rosenberger P, Stoll G, Birnbaumer L, Piekorz RP, Beer-Hammer S, Nieswandt B, Nürnberg B (2015) Platelet Gi protein Galphai2 is an essential mediator of thrombo-inflammatory organ damage in mice. Proc Natl Acad Sci U S A 112(20):6491–6496PubMedPubMedCentralGoogle Scholar
  11. 11.
    Gohla A, Klement K, Piekorz RP, Pexa K, vom Dahl S, Spicher K, Dreval V, Haussinger D, Birnbaumer L, Nürnberg B (2007) An obligatory requirement for the heterotrimeric G protein Gi3 in the antiautophagic action of insulin in the liver. Proc Natl Acad Sci U S A 104(8):3003–3008PubMedPubMedCentralGoogle Scholar
  12. 12.
    Plummer NW, Spicher K, Malphurs J, Akiyama H, Abramowitz J, Nürnberg B, Birnbaumer L (2012) Development of the mammalian axial skeleton requires signaling through the Galpha(i) subfamily of heterotrimeric G proteins. Proc Natl Acad Sci U S A 109(52):21366–21371PubMedPubMedCentralGoogle Scholar
  13. 13.
    Beer-Hammer S, Lee SC, Mauriac SA, Leiss V, Groh IAM, Novakovic A, Piekorz RP, Bucher K, Chen C, Ni K, Singer W, Harasztosi C, Schimmang T, Zimmermann U, Pfeffer K, Birnbaumer L, Forge A, Montcouquiol M, Knipper M, Nürnberg B, Ruttiger L (2018) Galphai proteins are indispensable for hearing. Cell Physiol Biochem 47(4):1509–1532PubMedGoogle Scholar
  14. 14.
    Racke MK, Hu W, Lovett-Racke AE (2005) PTX cruiser: driving autoimmunity via TLR4. Trends Immunol 26(6):289–291PubMedGoogle Scholar
  15. 15.
    Stojković A, Maslovarić I, Kosanović D, Vučetić D (2014) Pertussis vaccine-induced experimental autoimmune encephalomyelitis in mice. Transl Neurosci 5(1):57–63Google Scholar
  16. 16.
    Schellenberg AE, Buist R, Del Bigio MR, Toft-Hansen H, Khorooshi R, Owens T, Peeling J (2012) Blood-brain barrier disruption in CCL2 transgenic mice during pertussis toxin-induced brain inflammation. Fluids Barriers CNS 9(1):10PubMedPubMedCentralGoogle Scholar
  17. 17.
    Tonra JR, Reiseter BS, Kolbeck R, Nagashima K, Robertson R, Keyt B, Lindsay RM (2001) Comparison of the timing of acute blood-brain barrier breakdown to rabbit immunoglobulin G in the cerebellum and spinal cord of mice with experimental autoimmune encephalomyelitis. J Comp Neurol 430(1):131–144PubMedGoogle Scholar
  18. 18.
    Golden GS (1990) Pertussis vaccine and injury to the brain. J Pediatr 116(6):854–861PubMedGoogle Scholar
  19. 19.
    Sanchez-Blazquez P, Garzon J (1988) Pertussis toxin differentially reduces the efficacy of opioids to produce supraspinal analgesia in the mouse. Eur J Pharmacol 152(3):357–361PubMedGoogle Scholar
  20. 20.
    Wen ZH, Chang YC, Wong CS (2003) Implications of intrathecal pertussis toxin animal model on the cellular mechanisms of neuropathic pain syndrome. Acta Anaesthesiol Sin 41(4):187–196PubMedGoogle Scholar
  21. 21.
    Seidel G, Bocker K, Schulte J, Wewer C, Greune L, Humberg V, Schmidt MA (2011) Pertussis toxin permeabilization enhances the traversal of Escherichia coli K1, macrophages, and monocytes in a cerebral endothelial barrier model in vitro. Int J Med Microbiol 301(3):204–212PubMedGoogle Scholar
  22. 22.
    Fraker PJ, Speck JC Jr (1978) Protein and cell membrane iodinations with a sparingly soluble chloroamide, 1,3,4,6-tetrachloro-3a,6a-diphrenylglycoluril. Biochem Biophys Res Commun 80(4):849–857PubMedGoogle Scholar
  23. 23.
    Leiss V, Flockerzie K, Novakovic A, Rath M, Schonsiegel A, Birnbaumer L, Schurmann A, Harteneck C, Nürnberg B (2014) Insulin secretion stimulated by L-arginine and its metabolite L-ornithine depends on Galpha(i2). Am J Physiol Endocrinol Metab 307(9):E800–E812PubMedPubMedCentralGoogle Scholar
  24. 24.
    Leiss V, Friebe A, Welling A, Hofmann F, Lukowski R (2011) Cyclic GMP kinase I modulates glucagon release from pancreatic alpha-cells. Diabetes 60(1):148–156PubMedGoogle Scholar
  25. 25.
    Leopoldt D, Harteneck C, Nürnberg B (1997) G proteins endogenously expressed in Sf 9 cells: interactions with mammalian histamine receptors. Naunyn Schmiedeberg's Arch Pharmacol 356(2):216–224Google Scholar
  26. 26.
    Exner T, Jensen ON, Mann M, Kleuss C, Nürnberg B (1999) Posttranslational modification of Galphao1 generates Galphao3, an abundant G protein in brain. Proc Natl Acad Sci U S A 96(4):1327–1332PubMedPubMedCentralGoogle Scholar
  27. 27.
    Nürnberg B (1997) Pertussis toxin as a cell biology tool. Bacterial Toxins: Tools in Cell Biology and Pharmacology:47–60Google Scholar
  28. 28.
    Gutierrez JE, Rosenberg M, Seemann J, Breuer J, Haverstock D, Agris J, Balzer T, Anzalone N (2015) Safety and efficacy of gadobutrol for contrast-enhanced magnetic resonance imaging of the central nervous system: results from a multicenter, double-blind, randomized, comparator study. Magn Reson Insights 8:1–10PubMedPubMedCentralGoogle Scholar
  29. 29.
    Weinl C, Castaneda Vega S, Riehle H, Stritt C, Calaminus C, Wolburg H, Mauel S, Breithaupt A, Gruber AD, Wasylyk B, Olson EN, Adams RH, Pichler BJ, Nordheim A (2015) Endothelial depletion of murine SRF/MRTF provokes intracerebral hemorrhagic stroke. Proc Natl Acad Sci U S A 112(32):9914–9919PubMedPubMedCentralGoogle Scholar
  30. 30.
    Grant CC, McKay EJ, Simpson A, Buckley D (1998) Pertussis encephalopathy with high cerebrospinal fluid antibody titers to pertussis toxin and filamentous hemagglutinin. Pediatrics 102(4 Pt 1):986–990PubMedGoogle Scholar
  31. 31.
    McCarty DM, DiRosario J, Gulaid K, Muenzer J, Fu H (2009) Mannitol-facilitated CNS entry of rAAV2 vector significantly delayed the neurological disease progression in MPS IIIB mice. Gene Ther 16(11):1340–1352PubMedPubMedCentralGoogle Scholar
  32. 32.
    Obermeier B, Daneman R, Ransohoff RM (2013) Development, maintenance and disruption of the blood-brain barrier. Nat Med 19(12):1584–1596PubMedPubMedCentralGoogle Scholar
  33. 33.
    Castaneda Vega S, Weinl C, Calaminus C, Wang L, Harant M, Ehrlichmann W, Thiele D, Kohlhofer U, Reischl G, Hempel JM, Ernemann U, Quintanilla Martinez L, Nordheim A, Pichler BJ (2017) Characterization of a novel murine model for spontaneous hemorrhagic stroke using in vivo PET and MR multiparametric imaging. Neuroimage 155:245–256PubMedGoogle Scholar
  34. 34.
    Köhler D, Devanathan V, Bernardo de Oliveira Franz C, Eldh T, Novakovic A, Roth JM, Granja T, Birnbaumer L, Rosenberger P, Beer-Hammer S, Nürnberg B (2014) Galphai2- and Galphai3-deficient mice display opposite severity of myocardial ischemia reperfusion injury. PLoS One 9(5):e98325. CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Toyota T, Kai Y, Kakizaki M, Sakai A, Goto Y, Yajima M, Ui M (1980) Effects of islet-activating protein (IAP) on blood glucose and plasma insulin in healthy volunteers (phase 1 studies). Tohoku J Exp Med 130(2):105–116PubMedGoogle Scholar
  36. 36.
    Bache C, Spreitzer I, Becker B, Loeschner B, Rosskopf U, Hanschmann K-M, Schwanig M, Schneider CK, Lieb B, Montag T (2012) Bordetella pertussis toxin does not induce the release of pro-inflammatory cytokines in human whole blood. Med Microbiol Immunol 201(3):327–335PubMedGoogle Scholar
  37. 37.
    Ayme G, Caroff M, Chaby R, Haeffner-Cavaillon N, Le Dur A, Moreau M, Muset M, Mynard MC, Roumiantzeff M, Schulz D, Szabo L (1980) Biological activities of fragments derived from Bordetella pertussis endotoxin: isolation of a nontoxic, Shwartzman-negative lipid A possessing high adjuvant properties. Infect Immun 27(3):739–745PubMedPubMedCentralGoogle Scholar
  38. 38.
    Watanabe M, Takimoto H, Kumazawa Y, Amano K (1990) Biological properties of lipopolysaccharides from Bordetella species. J Gen Microbiol 136(3):489–493PubMedGoogle Scholar
  39. 39.
    Redhead K, Seagroatt V (1986) The effects of purified components of Bordetella pertussis in the weight gain test for the toxicity testing of pertussis vaccines. J Biol Stand 14(1):57–65PubMedGoogle Scholar
  40. 40.
    Katada T (2012) The inhibitory G protein G(i) identified as pertussis toxin-catalyzed ADP-ribosylation. Biol Pharm Bull 35(12):2103–2111PubMedGoogle Scholar
  41. 41.
    Adamson PB, Hull SS Jr, Vanoli E, De Ferrari GM, Wisler P, Foreman RD, Watanabe AM, Schwartz PJ (1993) Pertussis toxin-induced ADP ribosylation of inhibitor G proteins alters vagal control of heart rate in vivo. Am J Phys 265(2 Pt 2):H734–H740Google Scholar
  42. 42.
    Menkes JH, Kinsbourne M (1990) Workshop on neurologic complications of pertussis and pertussis vaccination. Neuropediatrics 21(4):171–176PubMedGoogle Scholar
  43. 43.
    Belzung C, Griebel G (2001) Measuring normal and pathological anxiety-like behaviour in mice: a review. Behav Brain Res 125(1–2):141–149PubMedGoogle Scholar
  44. 44.
    Durcan MJ, Morgan PF (1991) Intracerebroventricular pertussis toxin enhances sensitivity to N-methyl-D-aspartate-induced seizures in mice. Eur J Pharmacol 197(2–3):209–211PubMedGoogle Scholar
  45. 45.
    Geier DA, Geier MR (2004) An evaluation of serious neurological disorders following immunization: a comparison of whole-cell pertussis and acellular pertussis vaccines. Brain Dev 26(5):296–300PubMedGoogle Scholar
  46. 46.
    Bennett J, Basivireddy J, Kollar A, Biron KE, Reickmann P, Jefferies WA, McQuaid S (2010) Blood-brain barrier disruption and enhanced vascular permeability in the multiple sclerosis model EAE. J Neuroimmunol 229(1–2):180–191PubMedGoogle Scholar
  47. 47.
    Arimoto H, Tanuma N, Jee Y, Miyazawa T, Shima K, Matsumoto Y (2000) Analysis of experimental autoimmune encephalomyelitis induced in F344 rats by pertussis toxin administration. J Neuroimmunol 104(1):15–21PubMedGoogle Scholar
  48. 48.
    Wang C, Li Y, Proctor TM, Vandenbark AA, Offner H (2010) Down-modulation of programmed death 1 alters regulatory T cells and promotes experimental autoimmune encephalomyelitis. J Neurosci Res 88(1):7–15PubMedPubMedCentralGoogle Scholar
  49. 49.
    Brückener KE, el Baya A, Galla HJ, Schmidt MA (2003) Permeabilization in a cerebral endothelial barrier model by pertussis toxin involves the PKC effector pathway and is abolished by elevated levels of cAMP. J Cell Sci 116(Pt 9):1837–1846PubMedGoogle Scholar
  50. 50.
    Kügler S, Böcker K, Heusipp G, Greune L, Kim KS, Schmidt MA (2007) Pertussis toxin transiently affects barrier integrity, organelle organization and transmigration of monocytes in a human brain microvascular endothelial cell barrier model. Cell Microbiol 9(3):619–632PubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Salvador Castaneda Vega
    • 1
    • 2
  • Veronika Leiss
    • 3
  • Roland Piekorz
    • 4
  • Carsten Calaminus
    • 1
  • Katja Pexa
    • 4
  • Marta Vuozzo
    • 1
  • Andreas M. Schmid
    • 1
  • Vasudharani Devanathan
    • 3
    • 5
  • Christian Kesenheimer
    • 1
  • Bernd J. Pichler
    • 1
    • 2
  • Sandra Beer-Hammer
    • 3
  • Bernd Nürnberg
    • 3
    • 6
    Email author
  1. 1.Werner Siemens Imaging Center, Department of Preclinical Imaging and RadiopharmacyEberhard Karls University Tübingen and University Medical CenterTübingenGermany
  2. 2.Department of Nuclear Medicine and Clinical Molecular ImagingEberhard Karls UniversityTübingenGermany
  3. 3.Department of Pharmacology and Experimental Therapy, Institute for Experimental and Clinical Pharmacology and Toxicology, Interfaculty Center for Pharmacogenomics and Drug ResearchEberhard Karls University TübingenTübingenGermany
  4. 4.Institute for Biochemistry and Molecular Biology II, Medical FacultyHeinrich Heine University DüsseldorfDüsseldorfGermany
  5. 5.Neuroscience Lab, Department of BiologyIndian Institute of Science Education and Research (IISER)TirupatiIndia
  6. 6.Department of Toxicology, Institute for Experimental and Clinical Pharmacology and ToxicologyEberhard Karls University Tübingen, and University Medical CenterTübingenGermany

Personalised recommendations