Advertisement

Co-delivery of GOLPH3 siRNA and gefitinib by cationic lipid-PLGA nanoparticles improves EGFR-targeted therapy for glioma

  • Chengkun Ye
  • Bomin Pan
  • Haoyue Xu
  • Zongren Zhao
  • Jiawei Shen
  • Jun Lu
  • Rutong Yu
  • Hongmei LiuEmail author
Original Article

Abstract

Glioblastoma is one of the most aggressive types of brain tumor. Epidermal growth factor receptors (EGFRs) are overexpressed in glioma, and EGFR amplifications and mutations lead to rapid proliferation and invasion. EGFR-targeted therapy might be an effective treatment for glioma. Gefitinib (Ge) is an EGFR tyrosine kinase inhibitor (TKI), and Golgi phosphoprotein 3 (GOLPH3) expression is associated with worse glioma prognosis. Downregulation of GOLPH3 could promote EGFR degradation. Here, an angiopep-2 (A2)-modified cationic lipid-poly (lactic-co-glycolic acid) (PLGA) nanoparticle (A2-N) was developed that can release Ge and GOLPH3 siRNA (siGOLPH3) upon entering glioma cells and therefore acts as a combinatorial anti-tumor therapy. The in vitro and in vivo studies proved that A2-N/Ge/siGOLPH3 successfully crossed the blood-brain barrier (BBB) and targeted glioma. Released siGOLPH3 effectively silenced GOLPH3 mRNA expression and further promoted EGFR and p-EGFR degradation. Released Ge also markedly inhibited EGFR signaling. This combined EGFR-targeted action achieved remarkable anti-glioma effects and could be a safe and effective treatment for glioma.

Key messages

  • Angiopep-2-modified cationic lipid polymer can penetrate the BBB.

  • Gefitinib can inhibit EGFR signaling and block the autophosphorylation of critical tyrosine residues on EGFR.

  • GOLPH3 siRNA can be transfected into glioma and downregulate GLOPH3 expression.

  • A2-N/Ge/siGOLPH3 can inhibit glioma growth.

Keywords

Glioma Nanoparticles EGFR GOLPH3 Gefitinib 

Abbreviations

A2

angiopep2

ATP

adenosine triphosphate

BBB

blood-brain barrier

CLs

cationic liposomes

CLSM

confocal laser scan microscopy

DAPI

4′, 6-diamidino-2-phenylindole dihydrochloride

DMSO

dimethyl sulfoxide

DMEM

Dulbecco’s Modified Eagle’s Medium

DOTAP

1, 2-Dioleoyl-3-trimethylammonium-propane

DSPE-PEG-MAL

2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[maleimide(polyethyleneglycol)]

EB

Ethidium Bromide

EdU

5-Ethynyl-2'-deoxyuridine

EGFR

epidermal growth factor receptor

EGFRvIII

epidermal growth factor receptor variant typeIII

EPR

enhanced permeability and retention

FBS

fetal bovine serum

GBM

glioblastoma multiforme

Ge

gefitinib

GOLPH3

golgi phosphoprotein 3

H&E

hematoxylin-eosin

i.v.

intravenous injection

MAbs

monoclonal antibodies

LRP-1

low-density lipoprotein receptor-related protein-1

N

nanoparticle

NCsiRNA

nonsense siRNA

n.s.

nonesense

OD

optical density

PBS

phosphate buffer saline

PLGA

poly (D, L-lactic-co-glycolic acid)

qRT-PCR

quantitative real-time polymerase chain reaction

RMT

receptor mediated transcytosis

RNAi

RNA interference

siGOLPH3

GOLPH3 siRNA

siRNA

small interfering RNA

TCGA

The Cancer Genome Atlas

TEM

transmission electron microscopy

TKIs

tyrosine kinase inhibitors

WB

western blot

Wls

wntless

Notes

Funding information

This work was financially supported by National Natural Science Foundation of China (Grant No. 81772665), Jiangsu Province, Key Research & Development Plan of Jiangsu Province (No. BE2016646), Jiangsu provincial Commission of Health and Family Planning (Grant No. Q201608), Postgraduate Research & Practice Innovation Program of Jiangsu Province (Grant No. KYCX18_2197), and Six Talents Peak Foundation of Jiangsu Province (No. 2018-WSW-071).

Compliance with ethical standards

Ethics approval and consent to participate

This study was performed according to the guidelines for the Care and Use of Laboratory Animals and the animal experimental protocols were approved by Xuzhou Medical University of China Animal Care and Use Committee.

Competing interests

The authors declare that they have no competing interests.

Supplementary material

109_2019_1843_MOESM1_ESM.docx (1.1 mb)
ESM 1 (DOCX 1087 kb)

References

  1. 1.
    Laug D, Glasgow SM, Deneen B (2018) A glial blueprint for gliomagenesis. Nat Rev Neurosci. 19(7):393–403PubMedPubMedCentralGoogle Scholar
  2. 2.
    Lapointe S, Perry A, Butowski NA (2018) Primary brain tumors in adults. Lancet. 392(10145):432–446PubMedGoogle Scholar
  3. 3.
    Shergalis A, Bankhead A, Luesakul U, Muangsin N, Neamati N (2018) Current Challenges and opportunities in treating glioblastoma. Pharmacological Reviews. 70(3):412–445PubMedPubMedCentralGoogle Scholar
  4. 4.
    Nakada M, Kita D, Watanabe T, Hayashi Y, Teng L, Pyko IV, Hamada J (2011) Aberrant signaling pathways in glioma. Cancers (Basel). 3(3):3242–3278PubMedPubMedCentralGoogle Scholar
  5. 5.
    Ohgaki H, Dessen P, Jourde B, Horstmann S, Nishikawa T, Di Patre PL et al (2004) Genetic pathways to glioblastoma: a population-based study. Cancer Res. 64(19):6892–6899PubMedGoogle Scholar
  6. 6.
    Li J, Liang R, Song C, Xiang Y, Liu Y (2018) Prognostic significance of epidermal growth factor receptor expression in glioma patients. Onco Targets Ther. 11:731–742PubMedPubMedCentralGoogle Scholar
  7. 7.
    Tripathy K, Das B, Singh AK, Misra A, Misra S, Misra SS (2017) Prognostic significance of epidermal growth factor receptor in patients of glioblastoma multiforme. J Clin Diagn Res. 11(8):EC05–EEC8PubMedPubMedCentralGoogle Scholar
  8. 8.
    Mizoguchi M, Betensky RA, Batchelor TT, Bernay DC, Louis DN, Nutt CL (2006) Activation of STAT3, MAPK, and AKT in malignant astrocytic gliomas: correlation with EGFR status, tumor grade, and survival. J Neuropathol Exp Neurol. 65(12):1181–1188PubMedGoogle Scholar
  9. 9.
    Mao J, Ran D, Xie C, Shen Q, Wang S, Lu W (2017) EGFR/EGFRvIII dual-targeting peptide-mediated drug delivery for enhanced glioma therapy. ACS Appl Mater Interfaces. 9(29):24462–24475PubMedGoogle Scholar
  10. 10.
    Avraham R, Yarden Y (2011) Feedback regulation of EGFR signalling: decision making by early and delayed loops. Nat Rev Mol Cell Biol. 12(2):104–117PubMedGoogle Scholar
  11. 11.
    Thorne AH, Zanca C, Furnari F (2016) Epidermal growth factor receptor targeting and challenges in glioblastoma. Neuro Oncol. 18(7):914–918PubMedPubMedCentralGoogle Scholar
  12. 12.
    Rich JN, Rasheed BK, Yan H (2004) EGFR mutations and sensitivity to gefitinib. N Engl J Med. 351(12):1260–1261 author reply -1PubMedGoogle Scholar
  13. 13.
    Sirisoma N, Pervin A, Zhang H, Jiang S, Willardsen JA, Anderson MB, Mather G, Pleiman CM, Kasibhatla S, Tseng B, Drewe J, Cai SX (2009) Discovery of N-(4-Methoxyphenyl)-N,2-dimethylquinazolin-4-amine, a potent apoptosis inducer and efficacious anticancer agent with high blood brain barrier penetration. J Med Chem. 52(8):2341–2351PubMedGoogle Scholar
  14. 14.
    Shinde SR, Maddika S (2016) PTEN modulates EGFR late endocytic trafficking and degradation by dephosphorylating Rab7. Nat Commun. 7:10689PubMedPubMedCentralGoogle Scholar
  15. 15.
    Li MY, Lai PL, Chou YT, Chi AP, Mi YZ, Khoo KH, Chang GD, Wu CW, Meng TC, Chen GC (2015) Protein tyrosine phosphatase PTPN3 inhibits lung cancer cell proliferation and migration by promoting EGFR endocytic degradation. Oncogene. 34(29):3791–3803PubMedGoogle Scholar
  16. 16.
    Zhou XP, Xie S, Wu SS, Qi YH, Wang ZH, Zhang H, Lu D, Wang X, Dong Y, Liu G, Yang D, Shi Q, Bian W, Yu R (2017) Golgi phosphoprotein 3 promotes glioma progression via inhibiting Rab5-mediated endocytosis and degradation of epidermal growth factor receptor. Neuro-Oncology. 19(12):1628–1639PubMedPubMedCentralGoogle Scholar
  17. 17.
    Yuan Z, Zhao L, Zhang Y, Li S, Pan B, Hua L, Wang Z, Ye C, Lu J, Yu R, Liu H (2018) Inhibition of glioma growth by a GOLPH3 siRNA-loaded cationic liposomes. J Neurooncol. 140(2):249–260PubMedGoogle Scholar
  18. 18.
    Boado RJ (2007) Blood-brain barrier transport of non-viral gene and RNAi therapeutics. Pharm Res. 24(9):1772–1787PubMedGoogle Scholar
  19. 19.
    Shah L, Yadav S, Amiji M (2013) Nanotechnology for CNS delivery of bio-therapeutic agents. Drug Deliv Transl Res. 3(4):336–351PubMedPubMedCentralGoogle Scholar
  20. 20.
    Li Y, Baiyang L, Leran B, Zhen W, Yandong X, Baixiang D, Dandan Z, Yufu Z, Jun L, Rutong Y, Hongmei L (2017) Reduction-responsive PEtOz-SS-PCL micelle with tailored size to overcome blood-brain barrier and enhance doxorubicin antiglioma effect. Drug Deliv. 24(1):1782–1790PubMedGoogle Scholar
  21. 21.
    Lin T, Zhao P, Jiang Y, Tang Y, Jin H, Pan Z, He H, Yang VC, Huang Y (2016) Blood-brain-barrier-penetrating albumin nanoparticles for biomimetic drug delivery via albumin-binding protein pathways for antiglioma therapy. ACS Nano. 10(11):9999–10012PubMedGoogle Scholar
  22. 22.
    Ni D, Zhang J, Bu W, Xing H, Han F, Xiao Q, Yao Z, Chen F, He Q, Liu J, Zhang S, Fan W, Zhou L, Peng W, Shi J (2014) Dual-targeting upconversion nanoprobes across the blood-brain barrier for magnetic resonance/fluorescence imaging of intracranial glioblastoma. ACS Nano. 8(2):1231–1242PubMedGoogle Scholar
  23. 23.
    Liu HM, Zhang YF, Xie YD, Cai YF, Li BY, Li W et al (2017) Hypoxia-responsive ionizable liposome delivery siRNA for glioma therapy. Int J Nanomedicine. 12:1065–83.34PubMedPubMedCentralGoogle Scholar
  24. 24.
    Liu H, Li Y, Mozhi A, Zhang L, Liu Y, Xu X, Xing J, Liang X, Ma G, Yang J, Zhang X (2014) SiRNA-phospholipid conjugates for gene and drug delivery in cancer treatment. Biomaterials. 35(24):6519–6533PubMedGoogle Scholar
  25. 25.
    Tang J, Zhou H, Hou X, Wang L, Li Y, Pang Y et al (2018) Enhanced anti-tumor efficacy of temozolomide-loaded carboxylated poly(amido-amine) combined with photothermal/photodynamic therapy for melanoma treatment. Cancer Letters. 423:16–26PubMedGoogle Scholar
  26. 26.
    Xu R, Ji JX, Zhang X, Han MZ, Zhang C, Xu YY, Wei Y, Wang S, Huang B, Chen A, Zhang D, Zhang Q, Li W, Jiang Z, Wang J, Li X (2017) PDGFA/PDGFRα-regulated GOLM1 promotes human glioma progression through activation of AKT. Journal of Experimental & Clinical Cancer Research. 36(1):193Google Scholar
  27. 27.
    Brennan CW, Verhaak RGW, McKenna A, Campos B, Noushmehr H, Salama SR et al (2014) The somatic genomic landscape of glioblastoma. Cell. 155(2):462–477Google Scholar
  28. 28.
    Inda MD, Bonavia R, Mukasa A, Narita Y, Sah DWY, Vandenberg S, Brennan C, Johns TG, Bachoo R, Hadwiger P, Tan P, Depinho RA, Cavenee W, Furnari F (2010) Tumor heterogeneity is an active process maintained by a mutant EGFR-induced cytokine circuit in glioblastoma. Genes & Development. 24(16):1731–1745Google Scholar
  29. 29.
    De Vries NA, Buckle T, Zhao J, Beijnen JH, Schellens JHM, van Tellingen O (2012) Restricted brain penetration of the tyrosine kinase inhibitor erlotinib due to the drug transporters P-gp and BCRP. Invest New Drug. 30(2):443–449Google Scholar
  30. 30.
    Wen PY, Chang SM, Lamborn KR, Kuhn JG, Norden AD, Cloughesy TF et al (2014) Phase I/II study of erlotinib and temsirolimus for patients with recurrent malignant gliomas: North American Brain Tumor Consortium trial 04-02. Neuro-Oncology. 16(4):567–578PubMedPubMedCentralGoogle Scholar
  31. 31.
    Chakravarti A, Wang M, Robins HI, Lautenschlaeger T, Curran WJ, Brachman DG et al (2013) RTOG 0211: A phase 1/2 study of radiation therapy with concurrent gefitinib for newly diagnosed glioblastoma patients. Int J Radiat Oncol. 85(5):1206–1211Google Scholar
  32. 32.
    Clarke JL, Molinaro AM, Phillips JJ, Butowski NA, Chang SM, Perry A, Costello JF, DeSilva A, Rabbitt JE, Prados MD (2014) A single-institution phase II trial of radiation, temozolomide, erlotinib, and bevacizumab for initial treatment of glioblastoma. Neuro-Oncology. 16(7):984–990PubMedPubMedCentralGoogle Scholar
  33. 33.
    Reardon DA, Nabors LB, Mason WP, Perry JR, Shapiro W, Kavan P, Mathieu D, Phuphanich S, Cseh A, Fu Y, Cong J, Wind S, Eisenstat DD, BI 1200 36 Trial Group and the Canadian Brain Tumour Consortium. Phase I/randomized phase II study of afatinib, an irreversible ErbB family blocker, with or without protracted temozolomide in adults with recurrent glioblastoma. Neuro-Oncology. 2015; 17 (3): 430- 439.Google Scholar
  34. 34.
    Hegi ME, Diserens AC, Bady P, Kamoshima Y, Kouwenhoven MCM, Delorenzi M, Lambiv WL, Hamou MF, Matter MS, Koch A, Heppner FL, Yonekawa Y, Merlo A, Frei K, Mariani L, Hofer S (2011) Pathway analysis of glioblastoma tissue after preoperative treatment with the EGFR tyrosine kinase inhibitor Gefitinib-A phase II trial. Molecular Cancer Therapeutics. 10(6):1102–1112PubMedGoogle Scholar
  35. 35.
    Davidson BL, McCray PB (2011) Current prospects for RNA interference-based therapies. Nat Rev Genet. 12(5):329–340PubMedGoogle Scholar
  36. 36.
    Shi YJ, Su C, Cui WY, Li HD, Liu LW, Feng B et al (2014) Gefitinib loaded folate decorated bovine serum albumin conjugated carboxymethyl-beta-cyclodextrin nanoparticles enhance drug delivery and attenuate autophagy in folate receptor-positive cancer cells. Journal of Nanobiotechnology. 12:43PubMedPubMedCentralGoogle Scholar
  37. 37.
    Hoshyar N, Gray S, Han H, Bao G (2016) The effect of nanoparticle size on in vivo pharmacokinetics and cellular interaction. Nanomedicine (Lond). 11(6):673–692PubMedPubMedCentralGoogle Scholar
  38. 38.
    Wang L, Hao Y, Li H, Zhao Y, Meng D, Li D et al (2015) Co-delivery of doxorubicin and siRNA for glioma therapy by a brain targeting system: angiopep-2-modified poly(lactic-co-glycolic acid) nanoparticles. J Drug Target. 23(9):832–846PubMedGoogle Scholar
  39. 39.
    Kim SS, Rait A, Kim E, DeMarco J, Pirollo KF, Chang EH (2015) Encapsulation of temozolomide in a tumor-targeting nanocomplex enhances anti-cancer efficacy and reduces toxicity in a mouse model of glioblastoma. Cancer Lett. 369(1):250–258PubMedPubMedCentralGoogle Scholar
  40. 40.
    Wang Y, Cai D, Wu H, Fu Y, Cao Y, Zhang Y, Wu D, Tian Q, Yang S (2018) Functionalized Cu3BiS3 nanoparticles for dual-modal imaging and targeted photothermal/photodynamic therapy. Nanoscale. 10(9):4452–4462PubMedGoogle Scholar
  41. 41.
    Figueiredo P, Balasubramanian V, Shahbazi MA, Correia A, Wu D, Palivan CG, Hirvonen JT, Santos HA (2016) Angiopep2-functionalized polymersomes for targeted doxorubicin delivery to glioblastoma cells. Int J Pharm. 511(2):794–803PubMedGoogle Scholar
  42. 42.
    Strickland DK, Au DT, Cunfer P, Muratoglu SC (2014) Low-density lipoprotein receptor-related protein-1: role in the regulation of vascular integrity. Arterioscler Thromb Vasc Biol. 34(3):487–498PubMedPubMedCentralGoogle Scholar
  43. 43.
    Bertrand Y, Currie JC, Poirier J, Demeule M, Abulrob A, Fatehi D, Stanimirovic D, Sartelet H, Castaigne JP, Béliveau R (2011) Influence of glioma tumor microenvironment on the transport of ANG1005 via low-density lipoprotein receptor-related protein 1. Br J Cancer. 105(11):1697–1707PubMedPubMedCentralGoogle Scholar
  44. 44.
    Zhao K, Wang Q, Wang Y, Huang K, Yang C, Li Y, Yi K, Kang C (2017) EGFR/c-myc axis regulates TGFbeta/Hippo/Notch pathway via epigenetic silencing miR-524 in gliomas. Cancer Lett. 406:12–21PubMedGoogle Scholar
  45. 45.
    Wang W, Zhang H, Liu S, Kim CK, Xu Y, Hurley LA, Nishikawa R, Nagane M, Hu B, Stegh AH, Cheng SY, Cheng C (2017) Internalized CD44s splice isoform attenuates EGFR degradation by targeting Rab7A. Proc Natl Acad Sci U S A. 114(31):8366–8371PubMedPubMedCentralGoogle Scholar
  46. 46.
    Wang FY, Kang CS, Wang-Gou SY, Huang CH, Feng CY, Li XJ (2017) EGFL7 is an intercellular EGFR signal messenger that plays an oncogenic role in glioma. Cancer Lett. 384:9–18PubMedGoogle Scholar
  47. 47.
    Sepulveda-Sanchez JM, Vaz MA, Balana C, Gil-Gil M, Reynes G, Gallego O et al (2017) Phase II trial of dacomitinib, a pan-human EGFR tyrosine kinase inhibitor, in recurrent glioblastoma patients with EGFR amplification. Neuro Oncol. 19(11):1522–1531PubMedPubMedCentralGoogle Scholar
  48. 48.
    Pandita A, Aldape KD, Zadeh G, Guha A, James CD (2004) Contrasting in vivo and in vitro fates of glioblastoma cell subpopulations with amplified EGFR. Genes Chromosomes Cancer. 39(1):29–36PubMedGoogle Scholar
  49. 49.
    Ishii N, Maier D, Merlo A, Tada M, Sawamura Y, Diserens AC, Van Meir EG (1999) Frequent co-alterations of TP53, p16/CDKN2A, p14ARF, PTEN tumor suppressor genes in human glioma cell lines. Brain Pathol. 9(3):469–479PubMedGoogle Scholar
  50. 50.
    Wick W, Gorlia T, Bady P, Platten M, van den Bent MJ, Taphoorn MJB, Steuve J, Brandes AA, Hamou MF, Wick A, Kosch M, Weller M, Stupp R, Roth P, Golfinopoulos V, Frenel JS, Campone M, Ricard D, Marosi C, Villa S, Weyerbrock A, Hopkins K, Homicsko K, Lhermitte B, Pesce G, Hegi ME (2016) Phase II study of radiotherapy and temsirolimus versus radiochemotherapy with temozolomide in patients with newly diagnosed glioblastoma without MGMT promoter hypermethylation (EORTC 26082). Clinical Cancer Research. 22(19):4797–4806PubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Chengkun Ye
    • 1
    • 2
  • Bomin Pan
    • 1
    • 2
  • Haoyue Xu
    • 1
    • 2
  • Zongren Zhao
    • 1
    • 2
  • Jiawei Shen
    • 1
    • 2
  • Jun Lu
    • 3
  • Rutong Yu
    • 1
    • 2
  • Hongmei Liu
    • 1
    • 2
    Email author
  1. 1.Institute of Nervous System DiseasesXuzhou Medical UniversityXuzhouChina
  2. 2.Department of NeurosurgeryAffiliated Hospital of Xuzhou Medical CollegeXuzhouChina
  3. 3.Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life ScienceJiangsu Normal UniversityXuzhouChina

Personalised recommendations