Journal of Molecular Medicine

, Volume 98, Issue 1, pp 11–23 | Cite as

Mechanism and biomarkers in aortitis––a review

  • Benjamin Benhuri
  • Ammar ELJack
  • Bashar Kahaleh
  • Ritu ChakravartiEmail author


Aortitis can be the manifestation of an underlying infectious or noninfectious disease process. An autoimmune cause is suggested in a large proportion of noninfectious causes. Similar to other autoimmune diseases, the pathophysiology of aortitis has been investigated in detail, but the etiology remains unknown. Most cases of aortitis often go undetected for a long time and are often identified at late stages of the disease. Recent advances in imaging techniques have significantly improved the diagnosis of aortitis. However, significant challenges associated with the imaging techniques limit their use. Several routine inflammation-based markers, such as erythrocyte sedimentation rate (ESR), C-reactive protein (CRP), and inflammatory cytokines, are nonspecific and, therefore, have limited use in the diagnosis of aortitis. The search for more specific serum biomarkers, which can facilitate detection and progression is under progress. Several autoantibodies have been identified, but assigning their role in the pathogenesis as well as their specificity remains a challenge. The current review addresses some of these issues in detail.

Key messages

• Noninfectious aortitis is an autoimmune disease.

• Several biomarkers, including cytokines and autoantibodies, are increased in aortitis.

• Imaging techniques, commonly used to detect aortitis, are associated with the high cost and technical challenges.

• There is a need to develop low-cost biomarker-based detection tools.

• The knowledge of biomarkers in aortitis detection is discussed.


Aortitis Autoantigen Autoantibody Inflammation Biomarker 14-3-3zeta 


Funding information

We thank the American Heart Association (15SDG2308025) and UT startup funds for their financial support to Dr. Ritu Chakravarti.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflicts of interest.


  1. 1.
    Bossone E, Pluchinotta FR, Andreas M, Blanc P, Citro R, Limongelli G, Della Corte A, Parikh A, Frigiola A, Lerakis S, Ehrlich M, Aboyans V (2016) Aortitis. Vasc Pharmacol 80:1–10Google Scholar
  2. 2.
    Gornik HL, Creager MA (2008) Aortitis. Circulation 117(23):3039–3051PubMedPubMedCentralGoogle Scholar
  3. 3.
    Ramirez FD, Jamison BM, Hibbert B (2016) Infectious aortitis. Int Heart J 57(5):645–648PubMedGoogle Scholar
  4. 4.
    Caspary L (2016) Inflammatory diseases of the aorta. VASA Zeitschrift fur Gefasskrankheiten 45(1):17–29PubMedGoogle Scholar
  5. 5.
    Skeik N, Ostertag-Hill CA, Garberich RF, Alden PB, Alexander JQ, Cragg AH, Manunga JM, Stephenson EJ, Titus JM, Sullivan TM (2017) Diagnosis, management, and outcome of aortitis at a single center. Vasc Endovasc Surg 51(7):470–479Google Scholar
  6. 6.
    Nwadibia U, Larson E, Fanciullo J (2016) Polymyalgia rheumatica and giant cell arteritis: a review article. S D Med 69(3):121–123PubMedGoogle Scholar
  7. 7.
    Chen JJ, Leavitt JA, Fang C, Crowson CS, Matteson EL, Warrington KJ (2016) Evaluating the incidence of arteritic ischemic optic neuropathy and other causes of vision loss from giant cell arteritis. Ophthalmology 123(9):1999–2003PubMedPubMedCentralGoogle Scholar
  8. 8.
    Maksimowicz-McKinnon K, Clark TM, Hoffman GS (2009) Takayasu arteritis and giant cell arteritis: a spectrum within the same disease? Medicine (Baltimore) 88(4):221–226Google Scholar
  9. 9.
    Geiger J, Ness T, Uhl M, Lagreze WA, Vaith P, Langer M, Bley TA (2009) Involvement of the ophthalmic artery in giant cell arteritis visualized by 3T MRI. Rheumatology (Oxford) 48(5):537–541Google Scholar
  10. 10.
    Johnston SL, Lock RJ, Gompels MM (2002) Takayasu arteritis: a review. J Clin Pathol 55(7):481–486PubMedPubMedCentralGoogle Scholar
  11. 11.
    Soriano A, Muratore F, Pipitone N, Boiardi L, Cimino L, Salvarani C (2017) Visual loss and other cranial ischaemic complications in giant cell arteritis. Nat Rev Rheumatol 13(8):476–484PubMedGoogle Scholar
  12. 12.
    Sreih AG, Alibaz-Oner F, Kermani TA, Aydin SZ, Cronholm PF, Davis T, Easley E, Gul A, Mahr A, McAlear CA, Milman N, Robson JC, Tomasson G, Direskeneli H, Merkel PA (2017) Development of a core set of outcome measures for large-vessel vasculitis: report from OMERACT 2016. J Rheumatol. PubMedPubMedCentralGoogle Scholar
  13. 13.
    Michel BA, Arend WP, Hunder GG (1996) Clinical differentiation between giant cell (temporal) arteritis and Takayasu’s arteritis. J Rheumatol 23(1):106–111PubMedGoogle Scholar
  14. 14.
    Kermani TA, Crowson CS, Muratore F, Schmidt J, Matteson EL, Warrington KJ (2015) Extra-cranial giant cell arteritis and Takayasu arteritis: how similar are they? Semin Arthritis Rheum 44(6):724–728PubMedGoogle Scholar
  15. 15.
    Stone JR, Bruneval P, Angelini A, Bartoloni G, Basso C, Batoroeva L, Buja LM, Butany J, d’Amati G, Fallon JT, Gittenberger-de Groot AC, Gouveia RH, Halushka MK, Kelly KL, Kholova I, Leone O, Litovsky SH, Maleszewski JJ, Miller DV, Mitchell RN, Preston SD, Pucci A, Radio SJ, Rodriguez ER, Sheppard MN, Suvarna SK, Tan CD, Thiene G, van der Wal AC, Veinot JP (2015) Consensus statement on surgical pathology of the aorta from the Society for Cardiovascular Pathology and the Association for European Cardiovascular Pathology: I. Inflammatory diseases. Cardiovasc Pathol 24(5):267–278PubMedGoogle Scholar
  16. 16.
    Hoffman GS, Calabrese LH (2014) Vasculitis: determinants of disease patterns. Nat Rev Rheumatol 10(8):454–462PubMedGoogle Scholar
  17. 17.
    Svensson LG, Arafat A, Roselli EE, Idrees J, Clifford A, Tan C, Hoffman G, Eng C, Langford C, Rodriguez ER, Gornik HL, Blackstone E, Sabik JF 3rd, Lytle BW (2015) Inflammatory disease of the aorta: patterns and classification of giant cell aortitis, Takayasu arteritis, and nonsyndromic aortitis. J Thorac Cardiovasc Surg 149(2 Suppl):S170–S175PubMedGoogle Scholar
  18. 18.
    Zen Y, Kasashima S, Inoue D (2012) Retroperitoneal and aortic manifestations of immunoglobulin G4-related disease. Semin Diagn Pathol 29(4):212–218PubMedGoogle Scholar
  19. 19.
    Watanabe R, Goronzy JJ, Berry G, Liao YJ, Weyand CM (2016) Giant cell arteritis: from pathogenesis to therapeutic management. Curr Treatm Opt Rheumatol 2(2):126–137PubMedPubMedCentralGoogle Scholar
  20. 20.
    Chakravarti R, Gupta K, Swain M, Willard B, Scholtz J, Svensson LG, Roselli EE, Pettersson G, Johnston DR, Soltesz EG, Yamashita M, Stuehr D, Daly TM, Hoffman GS (2015) 14-3-3 in thoracic aortic aneurysms: identification of a novel autoantigen in large vessel vasculitis. Arthritis Rheumatol 67(7):1913–1921PubMedPubMedCentralGoogle Scholar
  21. 21.
    Kistner A, Bigler MB, Glatz K, Egli SB, Baldin FS, Marquardsen FA, Mehling M, Rentsch KM, Staub D, Aschwanden M, Recher M, Daikeler T, Berger CT (2017) Characteristics of autoantibodies targeting 14-3-3 proteins and their association with clinical features in newly diagnosed giant cell arteritis. Rheumatology (Oxford).
  22. 22.
    Nesher G (2014) Autoimmune aspects of giant cell arteritis. Isr Med Assoc J 16(7):454–455PubMedGoogle Scholar
  23. 23.
    Kuret T, Lakota K, Hocevar A, Burja B, Cucnik S, Sodin-Semrl S (2018) Evaluating the utility of autoantibodies for disease activity and relapse in giant cell arteritis. J Biol Regul Homeost Agents 32(2):313–319PubMedGoogle Scholar
  24. 24.
    Espinosa G, Tassies D, Font J, Munoz-Rodriguez FJ, Cervera R, Ordinas A, Reverter JC, Ingelmo M (2001) Antiphospholipid antibodies and thrombophilic factors in giant cell arteritis. Semin Arthritis Rheum 31(1):12–20PubMedGoogle Scholar
  25. 25.
    Baerlecken NT, Linnemann A, Gross WL, Moosig F, Vazquez-Rodriguez TR, Gonzalez-Gay MA, Martin J, Kotter I, Henes JC, Melchers I, Vaith P, Schmidt RE, Witte T (2012) Association of ferritin autoantibodies with giant cell arteritis/polymyalgia rheumatica. Ann Rheum Dis 71(6):943–947PubMedGoogle Scholar
  26. 26.
    Wang H, Ma J, Wu Q, Luo X, Chen Z, Kou L (2011) Circulating B lymphocytes producing autoantibodies to endothelial cells play a role in the pathogenesis of Takayasu arteritis. J Vasc Surg 53(1):174–180PubMedGoogle Scholar
  27. 27.
    van der Geest KS, Abdulahad WH, Chalan P, Rutgers A, Horst G, Huitema MG, Roffel MP, Roozendaal C, Kluin PM, Bos NA, Boots AM, Brouwer E (2014) Disturbed B cell homeostasis in newly diagnosed giant cell arteritis and polymyalgia rheumatica. Arthritis Rheum 66(7):1927–1938Google Scholar
  28. 28.
    Clement M, Galy A, Bruneval P, Morvan M, Hyafil F, Benali K, Pasi N, Deschamps L, Pellenc Q, Papo T, Nicoletti A, Sacre K (2016) Tertiary lymphoid organs in Takayasu arteritis. Front Immunol 7:158PubMedPubMedCentralGoogle Scholar
  29. 29.
    Ladich E, Yahagi K, Romero ME, Virmani R (2016) Vascular diseases: aortitis, aortic aneurysms, and vascular calcification. Cardiovasc Pathol 25(5):432–441PubMedGoogle Scholar
  30. 30.
    Ly KH, Regent A, Tamby MC, Mouthon L (2010) Pathogenesis of giant cell arteritis: more than just an inflammatory condition? Autoimmun Rev 9(10):635–645PubMedGoogle Scholar
  31. 31.
    Weyand CM, Liao YJ, Goronzy JJ (2012) The immunopathology of giant cell arteritis: diagnostic and therapeutic implications. J Neuroophthalmol 32(3):259–265PubMedPubMedCentralGoogle Scholar
  32. 32.
    Schaufelberger C, Andersson R, Nordborg E, Hansson GK, Nordborg C, Wahlstrom J (2008) An uneven expression of T cell receptor V genes in the arterial wall and peripheral blood in giant cell arteritis. Inflammation 31(6):372–383PubMedGoogle Scholar
  33. 33.
    Fais S, Burgio VL, Silvestri M, Capobianchi MR, Pacchiarotti A, Pallone F (1994) Multinucleated giant cells generation induced by interferon-gamma. Changes in the expression and distribution of the intercellular adhesion molecule-1 during macrophages fusion and multinucleated giant cell formation. Lab Investig 71(5):737–744PubMedGoogle Scholar
  34. 34.
    Weyand CM, Goronzy JJ (2003) Medium- and large-vessel vasculitis. N Engl J Med 349(2):160–169PubMedGoogle Scholar
  35. 35.
    Hsieh CS, Macatonia SE, Tripp CS, Wolf SF, O’Garra A, Murphy KM (1993) Development of TH1 CD4+ T cells through IL-12 produced by Listeria-induced macrophages. Science 260(5107):547–549PubMedGoogle Scholar
  36. 36.
    Weyand CM, Goronzy JJ (2013) Immune mechanisms in medium and large-vessel vasculitis. Nat Rev Rheumatol 9(12):731–740PubMedPubMedCentralGoogle Scholar
  37. 37.
    Deng J, Younge BR, Olshen RA, Goronzy JJ, Weyand CM (2010) Th17 and Th1 T-cell responses in giant cell arteritis. Circulation 121(7):906–915PubMedPubMedCentralGoogle Scholar
  38. 38.
    Labarca C, Koster MJ, Crowson CS, Makol A, Ytterberg SR, Matteson EL, Warrington KJ (2016) Predictors of relapse and treatment outcomes in biopsy-proven giant cell arteritis: a retrospective cohort study. Rheumatology (Oxford) 55(2):347–356Google Scholar
  39. 39.
    Muratore F, Kermani TA, Crowson CS, Green AB, Salvarani C, Matteson EL, Warrington KJ (2015) Large-vessel giant cell arteritis: a cohort study. Rheumatology (Oxford) 54(3):463–470Google Scholar
  40. 40.
    Corbera-Bellalta M, Planas-Rigol E, Lozano E, Terrades-Garcia N, Alba MA, Prieto-Gonzalez S, Garcia-Martinez A, Albero R, Enjuanes A, Espigol-Frigole G, Hernandez-Rodriguez J, Roux-Lombard P, Ferlin WG, Dayer JM, Kosco-Vilbois MH, Cid MC (2016) Blocking interferon gamma reduces expression of chemokines CXCL9, CXCL10 and CXCL11 and decreases macrophage infiltration in ex vivo cultured arteries from patients with giant cell arteritis. Ann Rheum Dis 75(6):1177–1186PubMedGoogle Scholar
  41. 41.
    Shirai T, Hilhorst M, Harrison DG, Goronzy JJ, Weyand CM (2015) Macrophages in vascular inflammation--from atherosclerosis to vasculitis. Autoimmunity 48(3):139–151PubMedPubMedCentralGoogle Scholar
  42. 42.
    Salvarani C, Casali B, Nicoli D, Farnetti E, Macchioni P, Catanoso MG, Chen Q, Bajocchi G, Boiardi L (2003) Endothelial nitric oxide synthase gene polymorphisms in giant cell arteritis. Arthritis Rheum 48(11):3219–3223PubMedGoogle Scholar
  43. 43.
    Enjuanes A, Benavente Y, Hernandez-Rodriguez J, Queralt C, Yague J, Jares P, de Sanjose S, Campo E, Cid MC (2012) Association of NOS2 and potential effect of VEGF, IL6, CCL2 and IL1RN polymorphisms and haplotypes on susceptibility to GCA--a simultaneous study of 130 potentially functional SNPs in 14 candidate genes. Rheumatology (Oxford) 51(5):841–851Google Scholar
  44. 44.
    Gonzalez-Gay MA, Oliver J, Sanchez E, Garcia-Porrua C, Paco L, Lopez-Nevot MA, Ollier WE, Martin J (2005) Association of a functional inducible nitric oxide synthase promoter variant with susceptibility to biopsy-proven giant cell arteritis. J Rheumatol 32(11):2178–2182PubMedGoogle Scholar
  45. 45.
    Borkowski A, Younge BR, Szweda L, Mock B, Bjornsson J, Moeller K, Goronzy JJ, Weyand CM (2002) Reactive nitrogen intermediates in giant cell arteritis: selective nitration of neocapillaries. Am J Pathol 161(1):115–123PubMedPubMedCentralGoogle Scholar
  46. 46.
    Samson M, Audia S, Fraszczak J, Trad M, Ornetti P, Lakomy D, Ciudad M, Leguy V, Berthier S, Vinit J, Manckoundia P, Maillefert JF, Besancenot JF, Aho-Glele S, Olsson NO, Lorcerie B, Guillevin L, Mouthon L, Saas P, Bateman A, Martin L, Janikashvili N, Larmonier N, Bonnotte B (2012) Th1 and Th17 lymphocytes expressing CD161 are implicated in giant cell arteritis and polymyalgia rheumatica pathogenesis. Arthritis Rheum 64(11):3788–3798PubMedGoogle Scholar
  47. 47.
    Weyand CM, Fulbright JW, Hunder GG, Evans JM, Goronzy JJ (2000) Treatment of giant cell arteritis: interleukin-6 as a biologic marker of disease activity. Arthritis Rheum 43(5):1041–1048PubMedGoogle Scholar
  48. 48.
    Berger CT, Rebholz-Chaves B, Recher M, Manigold T, Daikeler T (2019) Serial IL-6 measurements in patients with tocilizumab-treated large-vessel vasculitis detect infections and may predict early relapses. Ann Rheum Dis 78(7):1012–1014PubMedGoogle Scholar
  49. 49.
    Gloor AD, Yerly D, Adler S, Reichenbach S, Kuchen S, Seitz M, Villiger PM (2018) Immuno-monitoring reveals an extended subclinical disease activity in tocilizumab-treated giant cell arteritis. Rheumatology (Oxford) 57(10):1795–1801Google Scholar
  50. 50.
    Terrier B, Geri G, Chaara W, Allenbach Y, Rosenzwajg M, Costedoat-Chalumeau N, Fouret P, Musset L, Benveniste O, Six A, Klatzmann D, Saadoun D, Cacoub P (2012) Interleukin-21 modulates Th1 and Th17 responses in giant cell arteritis. Arthritis Rheum 64(6):2001–2011PubMedGoogle Scholar
  51. 51.
    Pulsatelli L, Boiardi L, Assirelli E, Pazzola G, Muratore F, Addimanda O, Dolzani P, Versari A, Casali M, Magnani L, Pignotti E, Pipitone N, Croci S, Meliconi R, Salvarani C (2017) Interleukin-6 and soluble interleukin-6 receptor are elevated in large-vessel vasculitis: a cross-sectional and longitudinal study. Clin Exp Rheumatol 35 Suppl 103(1):102–110PubMedGoogle Scholar
  52. 52.
    Kong X, Sun Y, Ma L, Chen H, Wei L, Wu W, Ji Z, Ma L, Zhang Z, Zhang Z, Zhao Z, Hou J, Dai S, Yang C, Jiang L (2016) The critical role of IL-6 in the pathogenesis of Takayasu arteritis. Clin Exp Rheumatol 34(3 Suppl 97):S21–S27PubMedGoogle Scholar
  53. 53.
    Chauhan SK, Tripathy NK, Sinha N, Nityanand S (2006) T-cell receptor repertoire of circulating gamma delta T-cells in Takayasu’s arteritis. Clin Immunol 118(2-3):243–249PubMedGoogle Scholar
  54. 54.
    Saadoun D, Garrido M, Comarmond C, Desbois AC, Domont F, Savey L, Terrier B, Geri G, Rosenzwajg M, Klatzmann D, Fourret P, Cluzel P, Chiche L, Gaudric J, Koskas F, Cacoub P (2015) Th1 and Th17 cytokines drive inflammation in Takayasu arteritis. Arthritis Rheumatol 67(5):1353–1360PubMedGoogle Scholar
  55. 55.
    Chapelon-Abric C, Saadoun D, Marie I, Comarmond C, Desbois AC, Domont F, Savey L, Cacoub P (2017) Sarcoidosis with Takayasu arteritis: a model of overlapping granulomatosis A report of seven cases and literature review. Int J Rheum Dis. PubMedGoogle Scholar
  56. 56.
    Gravanis MB (2000) Giant cell arteritis and Takayasu aortitis: morphologic, pathogenetic and etiologic factors. Int J Cardiol 75(Suppl 1):S21–S33 discussion S5-6PubMedGoogle Scholar
  57. 57.
    Goel R, Kabeerdoss J, Ram B, Prakash JA, Babji S, Nair A, Jeyaseelan L, Jeyaseelan V, Mathew J, Balaji V, Joseph G, Danda D (2017) Serum cytokine profile in Asian Indian patients with Takayasu arteritis and its association with disease activity. Open Rheumatol J 11:23–29PubMedPubMedCentralGoogle Scholar
  58. 58.
    Tripathy NK, Chauhan SK, Nityanand S (2004) Cytokine mRNA repertoire of peripheral blood mononuclear cells in Takayasu’s arteritis. Clin Exp Immunol 138(2):369–374PubMedPubMedCentralGoogle Scholar
  59. 59.
    Ferfar Y, Mirault T, Desbois AC, Comarmond C, Messas E, Savey L, Domont F, Cacoub P, Saadoun D (2016) Biotherapies in large vessel vasculitis. Autoimmun Rev 15(6):544–551PubMedGoogle Scholar
  60. 60.
    Bienvenu B, Ly KH, Lambert M, Agard C, Andre M, Benhamou Y, Bonnotte B, de Boysson H, Espitia O, Fau G, Fauchais AL, Galateau-Salle F, Haroche J, Heron E, Lapebie FX, Liozon E, Luong Nguyen LB, Magnant J, Manrique A, Matt M, de Menthon M, Mouthon L, Puechal X, Pugnet G, Quemeneur T, Regent A, Saadoun D, Samson M, Sene D, Smets P, Yelnik C, Sailler L, Mahr A, Groupe d’Etude Francais des Arterites des gros Vaisseaux utAotFdMA-IeA-IR (2016) Management of giant cell arteritis: recommendations of the French Study Group for Large Vessel Vasculitis (GEFA). Rev Med Int 37(3):154–165Google Scholar
  61. 61.
    Matteson EL, Buttgereit F, Dejaco C, Dasgupta B (2016) Glucocorticoids for management of polymyalgia rheumatica and giant cell arteritis. Rheum Dis Clin N Am 42(1):75–90, viiiGoogle Scholar
  62. 62.
    Weyand CM, Younge BR, Goronzy JJ (2011) IFN-gamma and IL-17: the two faces of T-cell pathology in giant cell arteritis. Curr Opin Rheumatol 23(1):43–49PubMedPubMedCentralGoogle Scholar
  63. 63.
    Restuccia G, Boiardi L, Cavazza A, Catanoso M, Macchioni P, Muratore F, Cimino L, Aldigeri R, Crescentini F, Pipitone N, Salvarani C (2016) Flares in biopsy-proven giant cell arteritis in Northern Italy: characteristics and predictors in a long-term follow-up study. Medicine. 95(19):e3524PubMedPubMedCentralGoogle Scholar
  64. 64.
    Nakagomi D, Jayne D (2016) Outcome assessment in Takayasu arteritis. Rheumatology (Oxford) 55(7):1159–1171Google Scholar
  65. 65.
    Aydin SZ, Merkel PA, Direskeneli H (2015) Outcome measures for Takayasu’s arteritis. Curr Opin Rheumatol 27(1):32–37PubMedGoogle Scholar
  66. 66.
    Dejaco C, Ramiro S, Duftner C, Besson FL, Bley TA, Blockmans D, Brouwer E, Cimmino MA, Clark E, Dasgupta B, Diamantopoulos AP, Direskeneli H, Iagnocco A, Klink T, Neill L, Ponte C, Salvarani C, Slart R, Whitlock M, Schmidt WA (2018) EULAR recommendations for the use of imaging in large vessel vasculitis in clinical practice. Ann Rheum Dis 77(5):636–643PubMedGoogle Scholar
  67. 67.
    Loricera J, Blanco R, Hernandez JL, Carril JM, Martinez-Rodriguez I, Canga A, Peiro E, Alonso-Gutierrez J, Calvo-Rio V, Ortiz-Sanjuan F, Mata C, Pina T, Gonzalez-Vela MC, Martinez-Amador N, Gonzalez-Gay MA (2015) Non-infectious aortitis: a report of 32 cases from a single tertiary centre in a 4-year period and literature review. Clin Exp Rheumatol 33(2 Suppl 89):S-19-31PubMedGoogle Scholar
  68. 68.
    Vanoli M, Daina E, Salvarani C, Sabbadini MG, Rossi C, Bacchiani G, Schieppati A, Baldissera E, Bertolini G, Itaka Study G (2005) Takayasu’s arteritis: a study of 104 Italian patients. Arthritis Rheum 53(1):100–107PubMedGoogle Scholar
  69. 69.
    Marie I, Proux A, Duhaut P, Primard E, Lahaxe L, Girszyn N, Louvel JP, Levesque H (2009) Long-term follow-up of aortic involvement in giant cell arteritis: a series of 48 patients. Medicine 88(3):182–192PubMedGoogle Scholar
  70. 70.
    Houthuizen P, Polak PE, Edelbroek MA, Peels CH (2009) Giant cell arteritis as a cardiovascular entity. Neth Heart J 17(7-8):281–283PubMedPubMedCentralGoogle Scholar
  71. 71.
    Nuenninghoff DM, Matteson EL (2003) The role of disease-modifying antirheumatic drugs in the treatment of giant cell arteritis. Clin Exp Rheumatol 21(6 Suppl 32):S29–S34PubMedGoogle Scholar
  72. 72.
    Schmidt WA (2013) Imaging in vasculitis. Best Pract Res Clin Rheumatol 27(1):107–118PubMedGoogle Scholar
  73. 73.
    Germano G, Monti S, Ponte C, Possemato N, Caporali R, Salvarani C, Macchioni P, Pipitone N (2017) The role of ultrasound in the diagnosis and follow-up of large-vessel vasculitis: an update. Clin Exp Rheumatol 103:194–198Google Scholar
  74. 74.
    Berger CT, Sommer G, Aschwanden M, Staub D, Rottenburger C, Daikeler T (2018) The clinical benefit of imaging in the diagnosis and treatment of giant cell arteritis. Swiss Med Wkly 148:w14661PubMedGoogle Scholar
  75. 75.
    Jiemy WF, Heeringa P, Kamps J, van der Laken CJ, Slart R, Brouwer E (2018) Positron emission tomography (PET) and single photon emission computed tomography (SPECT) imaging of macrophages in large vessel vasculitis: current status and future prospects. Autoimmun Rev 17(7):715–726PubMedGoogle Scholar
  76. 76.
    Brkic A, Terslev L, Moller Dohn U, Torp-Pedersen S, Schmidt WA, Diamantopoulos AP (2019) Clinical applicability of ultrasound in systemic large vessel vasculitides. Arthritis Rheumatol. Google Scholar
  77. 77.
    Blockmans D (2012) Diagnosis and extension of giant cell arteritis. Contribution of imaging techniques. Presse Med 41(10):948–954PubMedGoogle Scholar
  78. 78.
    Pletcher MJ, Pignone M (2011) Evaluating the clinical utility of a biomarker: a review of methods for estimating health impact. Circulation 123(10):1116–1124PubMedPubMedCentralGoogle Scholar
  79. 79.
    Suzuki T, Bossone E, Sawaki D, Janosi RA, Erbel R, Eagle K, Nagai R (2013) Biomarkers of aortic diseases. Am Heart J 165(1):15–25PubMedGoogle Scholar
  80. 80.
    Monach PA (2014) Biomarkers in vasculitis. Curr Opin Rheumatol 26(1):24–30PubMedPubMedCentralGoogle Scholar
  81. 81.
    Olthof SC, Krumm P, Henes J, Nikolaou K, la Fougere C, Pfannenberg C, Schwenzer N (2018) Imaging giant cell arteritis and aortitis in contrast enhanced 18F-FDG PET/CT: which imaging score correlates best with laboratory inflammation markers? Eur J Radiol 99:94–102PubMedGoogle Scholar
  82. 82.
    Salvarani C, Cantini F, Boiardi L, Hunder GG (2003) Laboratory investigations useful in giant cell arteritis and Takayasu’s arteritis. Clin Exp Rheumatol 21(6 Suppl 32):S23–S28PubMedGoogle Scholar
  83. 83.
    Hoffman GS, Ahmed AE (1998) Surrogate markers of disease activity in patients with Takayasu arteritis. A preliminary report from The International Network for the Study of the Systemic Vasculitides (INSSYS). Int J Cardiol 66(Suppl 1):S191–S194 discussion S5PubMedGoogle Scholar
  84. 84.
    O’Connor TE, Carpenter HE, Bidari S, Waters MF, Hedna VS (2014) Role of inflammatory markers in Takayasu arteritis disease monitoring. BMC Neurol 14:62PubMedPubMedCentralGoogle Scholar
  85. 85.
    Kerr GS, Hallahan CW, Giordano J, Leavitt RY, Fauci AS, Rottem M, Hoffman GS (1994) Takayasu arteritis. Ann Intern Med 120(11):919–929PubMedGoogle Scholar
  86. 86.
    O'Neill L, Rooney P, Molloy D, Connolly M, McCormick J, McCarthy G, Veale DJ, Murphy CC, Fearon U, Molloy E (2015) Regulation of inflammation and angiogenesis in giant cell arteritis by acute-phase serum amyloid A. Arthritis Rheumatol 67(9):2447–2456PubMedGoogle Scholar
  87. 87.
    Hachulla E, Saile R, Parra HJ, Hatron PY, Gosset D, Fruchart JC, Devulder B (1991) Serum amyloid A concentrations in giant-cell arteritis and polymyalgia rheumatica: a useful test in the management of the disease. Clin Exp Rheumatol 9(2):157–163PubMedGoogle Scholar
  88. 88.
    Galluzzi L, Buque A, Kepp O, Zitvogel L, Kroemer G (2017) Immunogenic cell death in cancer and infectious disease. Nat Rev Immunol 17(2):97–111PubMedGoogle Scholar
  89. 89.
    Liu M, Liu X, Ren P, Li J, Chai Y, Zheng SJ, Chen Y, Duan ZP, Li N, Zhang JY (2014) A cancer-related protein 14-3-3zeta is a potential tumor-associated antigen in immunodiagnosis of hepatocellular carcinoma. Tumour Biol 35(5):4247–4256PubMedPubMedCentralGoogle Scholar
  90. 90.
    Maksymowych WP, Boire G, van Schaardenburg D, Wichuk S, Turk S, Boers M, Siminovitch KA, Bykerk V, Keystone E, Tak PP, van Kuijk AW, Landewe R, van der Heijde D, Murphy M, Marotta A (2015) 14-3-3eta autoantibodies: diagnostic use in early rheumatoid arthritis. J Rheumatol 42(9):1587–1594PubMedGoogle Scholar
  91. 91.
    Funami K, Matsumoto M, Obuse C, Seya T (2016) 14-3-3-zeta participates in TLR3-mediated TICAM-1 signal-platform formation. Mol Immunol 73:60–68PubMedGoogle Scholar
  92. 92.
    Schuster TB, Costina V, Findeisen P, Neumaier M, Ahmad-Nejad P (2011) Identification and functional characterization of 14-3-3 in TLR2 signaling. J Proteome Res 10(10):4661–4670PubMedGoogle Scholar
  93. 93.
    Rodriguez-Pla A, Martinez-Murillo F, Savino PJ, Eagle RC Jr, Seo P, Soloski MJ (2009) MMP-12, a novel matrix metalloproteinase associated with giant cell arteritis. Rheumatology (Oxford) 48(11):1460–1461Google Scholar
  94. 94.
    O’Connell D, Bouazza B, Kokalari B, Amrani Y, Khatib A, Ganther JD, Tliba O (2015) IFN-gamma-induced JAK/STAT, but not NF-kappaB, signaling pathway is insensitive to glucocorticoid in airway epithelial cells. Am J Physiol Lung Cell Mol Physiol 309(4):L348–L359PubMedPubMedCentralGoogle Scholar
  95. 95.
    Serra R, Butrico L, Fugetto F, Chibireva MD, Malva A, De Caridi G, Massara M, Barbetta A, Cannistra M, de Franciscis S (2016) Updates in pathophysiology, diagnosis and management of Takayasu arteritis. Ann Vasc Surg 35:210–225PubMedGoogle Scholar
  96. 96.
    Pointer CB, Wenzel TJ, Klegeris A (2019) Extracellular cardiolipin regulates select immune functions of microglia and microglia-like cells. Brain Res Bull 146:153–163PubMedGoogle Scholar
  97. 97.
    Park MC, Lee SW, Park YB, Lee SK (2006) Serum cytokine profiles and their correlations with disease activity in Takayasu’s arteritis. Rheumatology (Oxford) 45(5):545–548PubMedGoogle Scholar
  98. 98.
    Tamura N, Maejima Y, Tezuka D, Takamura C, Yoshikawa S, Ashikaga T, Hirao K, Isobe M (2017) Profiles of serum cytokine levels in Takayasu arteritis patients: potential utility as biomarkers for monitoring disease activity. J Cardiol 70(3):278–285PubMedGoogle Scholar
  99. 99.
    Alibaz-Oner F, Yentur SP, Saruhan-Direskeneli G, Direskeneli H (2015) Serum cytokine profiles in Takayasu’s arteritis: search for biomarkers. Clin Exp Rheumatol 33(2 Suppl 89):S-32-5PubMedGoogle Scholar
  100. 100.
    van der Geest KS, Abdulahad WH, Rutgers A, Horst G, Bijzet J, Arends S, Roffel MP, Boots AM, Brouwer E (2015) Serum markers associated with disease activity in giant cell arteritis and polymyalgia rheumatica. Rheumatology (Oxford) 54(8):1397–1402Google Scholar
  101. 101.
    Roche NE, Fulbright JW, Wagner AD, Hunder GG, Goronzy JJ, Weyand CM (1993) Correlation of interleukin-6 production and disease activity in polymyalgia rheumatica and giant cell arteritis. Arthritis Rheum 36(9):1286–1294PubMedGoogle Scholar
  102. 102.
    Dasgupta B, Panayi GS (1990) Interleukin-6 in serum of patients with polymyalgia rheumatica and giant cell arteritis. Br J Rheumatol 29(6):456–458PubMedGoogle Scholar
  103. 103.
    Marquez A, Hernandez-Rodriguez J, Cid MC, Solans R, Castaneda S, Fernandez-Contreras ME, Ramentol M, Morado IC, Narvaez J, Gomez-Vaquero C, Martinez-Taboada VM, Ortego-Centeno N, Sopena B, Monfort J, Garcia-Villanueva MJ, Caminal-Montero L, de Miguel E, Blanco R, Spanish GCAC, Palm O, Molberg O, Latus J, Braun N, Moosig F, Witte T, Beretta L, Santaniello A, Pazzola G, Boiardi L, Salvarani C, Gonzalez-Gay MA, Martin J (2014) Influence of the IL17A locus in giant cell arteritis susceptibility. Ann Rheum Dis 73(9):1742–1745PubMedGoogle Scholar
  104. 104.
    Carmona FD, Coit P, Saruhan-Direskeneli G, Hernandez-Rodriguez J, Cid MC, Solans R, Castaneda S, Vaglio A, Direskeneli H, Merkel PA, Boiardi L, Salvarani C, Gonzalez-Gay MA, Martin J, Sawalha AH, Spanish GCASG, Italian GCASG, Turkish Takayasu Study G, Vasculitis Clinical Research C (2017) Analysis of the common genetic component of large-vessel vasculitides through a meta-Immunochip strategy. Sci Rep 7:43953PubMedPubMedCentralGoogle Scholar
  105. 105.
    Palomino-Morales RJ, Vazquez-Rodriguez TR, Torres O, Morado IC, Castaneda S, Miranda-Filloy JA, Callejas-Rubio JL, Fernandez-Gutierrez B, Gonzalez-Gay MA, Martin J (2010) Association between IL-18 gene polymorphisms and biopsy-proven giant cell arteritis. Arthritis Res Ther 12(2):R51PubMedPubMedCentralGoogle Scholar
  106. 106.
    Ahn JK, Seo JM, Yu J, Oh FS, Chung H, Yu HG (2005) Down-regulation of IFN-gamma-producing CD56+ T cells after combined low-dose cyclosporine/prednisone treatment in patients with Behcet’s uveitis. Invest Ophthalmol Vis Sci 46(7):2458–2464PubMedGoogle Scholar
  107. 107.
    Tulunay A, Dozmorov MG, Ture-Ozdemir F, Yilmaz V, Eksioglu-Demiralp E, Alibaz-Oner F, Ozen G, Wren JD, Saruhan-Direskeneli G, Sawalha AH, Direskeneli H (2015) Activation of the JAK/STAT pathway in Behcet’s disease. Genes Immun 16(2):170–175PubMedGoogle Scholar
  108. 108.
    Torres O, Palomino-Morales R, Vazquez-Rodriguez T, Castaneda S, Morado IC, Miranda-Filloy JA, Amigo-Diaz E, Callejas-Rubio JL, Fernandez-Gutierrez B, Martin J, Gonzalez-Gay MA (2010) Lack of association between IFNGR1 gene polymorphisms and biopsy-proven giant cell arteritis. Clin Exp Rheumatol 28(1 Suppl 57):31–34PubMedGoogle Scholar
  109. 109.
    Dogan S, Piskin O, Solmaz D, Akar S, Gulcu A, Yuksel F, Cakir V, Sari I, Akkoc N, Onen F (2014) Markers of endothelial damage and repair in Takayasu arteritis: are they associated with disease activity? Rheumatol Int 34(8):1129–1138PubMedGoogle Scholar
  110. 110.
    Goodfellow N, Morlet J, Singh S, Sabokbar A, Hutchings A, Sharma V, Vaskova J, Masters S, Zarei A, Luqmani R (2017) Is vascular endothelial growth factor a useful biomarker in giant cell arteritis? RMD Open 3(1):e000353PubMedPubMedCentralGoogle Scholar
  111. 111.
    Ishihara T, Haraguchi G, Tezuka D, Kamiishi T, Inagaki H, Isobe M (2013) Diagnosis and assessment of Takayasu arteritis by multiple biomarkers. Circ J 77(2):477–483PubMedGoogle Scholar
  112. 112.
    Sun Y, Ma L, Yan F, Liu H, Ding Y, Hou J, Jiang L (2012) MMP-9 and IL-6 are potential biomarkers for disease activity in Takayasu’s arteritis. Int J Cardiol 156(2):236–238PubMedGoogle Scholar
  113. 113.
    Matsuyama A, Sakai N, Ishigami M, Hiraoka H, Kashine S, Hirata A, Nakamura T, Yamashita S, Matsuzawa Y (2003) Matrix metalloproteinases as novel disease markers in Takayasu arteritis. Circulation. 108(12):1469–1473PubMedGoogle Scholar
  114. 114.
    Liu Q, Dang A, Chen B, Lv N, Wang X, Zheng D (2014) Function of N-terminal pro-brain natriuretic peptide in Takayasu arteritis disease monitoring. J Rheumatol 41(8):1683–1688PubMedGoogle Scholar
  115. 115.
    Lozano E, Segarra M, Corbera-Bellalta M, Garcia-Martinez A, Espigol-Frigole G, Pla-Campo A, Hernandez-Rodriguez J, Cid MC (2010) Increased expression of the endothelin system in arterial lesions from patients with giant-cell arteritis: association between elevated plasma endothelin levels and the development of ischaemic events. Ann Rheum Dis 69(2):434–442PubMedGoogle Scholar
  116. 116.
    Crowther M, Goodall S, Jones JL, Bell PR, Thompson MM (2000) Localization of matrix metalloproteinase 2 within the aneurysmal and normal aortic wall. Br J Surg 87(10):1391–1400PubMedGoogle Scholar
  117. 117.
    Johnatty RN, Taub DD, Reeder SP, Turcovski-Corrales SM, Cottam DW, Stephenson TJ, Rees RC (1997) Cytokine and chemokine regulation of proMMP-9 and TIMP-1 production by human peripheral blood lymphocytes. J Immunol 158(5):2327–2333PubMedGoogle Scholar
  118. 118.
    Fukui S, Nunokawa T, Kobayashi S, Kamei S, Yokogawa N, Takizawa Y, Shimada K, Sugii S, Setoguchi K (2016) MMP-3 can distinguish isolated PMR from PMR with GCA: A retrospective study regarding PMR and GCA in Japan. Mod Rheumatol 26(2):259–264PubMedGoogle Scholar
  119. 119.
    Rodriguez-Pla A, Bosch-Gil JA, Rossello-Urgell J, Huguet-Redecilla P, Stone JH, Vilardell-Tarres M (2005) Metalloproteinase-2 and -9 in giant cell arteritis: involvement in vascular remodeling. Circulation 112(2):264–269PubMedGoogle Scholar
  120. 120.
    Ishihara T, Haraguchi G, Kamiishi T, Tezuka D, Inagaki H, Isobe M (2011) Sensitive assessment of activity of Takayasu’s arteritis by pentraxin3, a new biomarker. J Am Coll Cardiol 57(16):1712–1713PubMedGoogle Scholar
  121. 121.
    Norata GD, Marchesi P, Pulakazhi Venu VK, Pasqualini F, Anselmo A, Moalli F, Pizzitola I, Garlanda C, Mantovani A, Catapano AL (2009) Deficiency of the long pentraxin PTX3 promotes vascular inflammation and atherosclerosis. Circulation 120(8):699–708PubMedGoogle Scholar
  122. 122.
    Dagna L, Salvo F, Tiraboschi M, Bozzolo EP, Franchini S, Doglioni C, Manfredi AA, Baldissera E, Sabbadini MG (2011) Pentraxin-3 as a marker of disease activity in Takayasu arteritis. Ann Intern Med 155(7):425–433PubMedGoogle Scholar
  123. 123.
    Iwagaitsu S, Naniwa T (2017) Improvement of arterial wall lesions in parallel with decrease of plasma pentraxin-3 levels in a patient with refractory Takayasu arteritis after treatment with tocilizumab. Case Rep Rheumatol 2017:4580967PubMedPubMedCentralGoogle Scholar
  124. 124.
    Tombetti E, Di Chio MC, Sartorelli S, Papa M, Salerno A, Bottazzi B, Bozzolo EP, Greco M, Rovere-Querini P, Baldissera E, Del Maschio A, Mantovani A, De Cobelli F, Sabbadini MG, Manfredi AA (2014) Systemic pentraxin-3 levels reflect vascular enhancement and progression in Takayasu arteritis. Arthritis Res Ther 16(6):479PubMedPubMedCentralGoogle Scholar
  125. 125.
    Alibaz-Oner F, Aksu K, Yentur SP, Keser G, Saruhan-Direskeneli G, Direskeneli H (2016) Plasma pentraxin-3 levels in patients with Takayasu’s arteritis during routine follow-up. Clin Exp Rheumatol 34(3 Suppl 97):S73–S76PubMedGoogle Scholar
  126. 126.
    Mahadavan G, Nguyen TH, Horowitz JD (2014) Brain natriuretic peptide: a biomarker for all cardiac disease? Curr Opin Cardiol 29(2):160–166PubMedGoogle Scholar
  127. 127.
    Planas-Rigol E, Terrades-Garcia N, Corbera-Bellalta M, Lozano E, Alba MA, Segarra M, Espigol-Frigole G, Prieto-Gonzalez S, Hernandez-Rodriguez J, Preciado S, Lavilla R, Cid MC (2017) Endothelin-1 promotes vascular smooth muscle cell migration across the artery wall: a mechanism contributing to vascular remodelling and intimal hyperplasia in giant-cell arteritis. Ann Rheum Dis 76(9):1624–1634PubMedGoogle Scholar
  128. 128.
    Direskeneli H, Aydin SZ, Kermani TA, Matteson EL, Boers M, Herlyn K, Luqmani RA, Neogi T, Seo P, Suppiah R, Tomasson G, Merkel PA (2011) Development of outcome measures for large-vessel vasculitis for use in clinical trials: opportunities, challenges, and research agenda. J Rheumatol 38(7):1471–1479PubMedPubMedCentralGoogle Scholar
  129. 129.
    Nakagomi D, Cousins C, Sznajd J, Furuta S, Mohammad AJ, Luqmani R, Jayne D (2017) Development of a score for assessment of radiologic damage in large-vessel vasculitis (Combined Arteritis Damage Score, CARDS). Clin Exp Rheumatol 35 Suppl 103(1):139–145PubMedGoogle Scholar
  130. 130.
    Grosse K, Witte T, Moosig F, Hoyer BF, Lansche C, Schmidt RE, Baerlecken NT (2014) Association of ferritin antibodies with Takayasu arteritis. Clin Rheumatol 33(10):1523–1526PubMedGoogle Scholar
  131. 131.
    Regent A, Dib H, Ly KH, Agard C, Tamby MC, Tamas N, Weksler B, Federici C, Broussard C, Guillevin L, Mouthon L (2011) Identification of target antigens of anti-endothelial cell and anti-vascular smooth muscle cell antibodies in patients with giant cell arteritis: a proteomic approach. Arthritis Res Ther 13(3):R107PubMedPubMedCentralGoogle Scholar
  132. 132.
    Lopez-Hoyos M, Alvarez L, Ruiz Soto M, Blanco R, Jose Bartolome M, Martinez-Taboada VM (2008) Serum levels of antibodies to Chlamydia pneumoniae and human HSP60 in giant cell arteritis patients. Clin Exp Rheumatol 26(6):1107–1110PubMedGoogle Scholar
  133. 133.
    Weyand CM, Goronzy JJ (1995) Giant cell arteritis as an antigen-driven disease. Rheum Dis Clin N Am 21(4):1027–1039Google Scholar
  134. 134.
    Gilden D, White T, Khmeleva N, Katz BJ, Nagel MA (2016) Blinded search for varicella zoster virus in giant cell arteritis (GCA)-positive and GCA-negative temporal arteries. J Neurol Sci 364:141–143PubMedPubMedCentralGoogle Scholar
  135. 135.
    Gillot JM, Masy E, Davril M, Hachulla E, Hatron PY, Devulder B, Dessaint JP (1997) Elastase derived elastin peptides: putative autoimmune targets in giant cell arteritis. J Rheumatol 24(4):677–682PubMedGoogle Scholar
  136. 136.
    Dovrat S, Caspi M, Zilberberg A, Lahav L, Firsow A, Gur H, Rosin-Arbesfeld R (2014) 14-3-3 and beta-catenin are secreted on extracellular vesicles to activate the oncogenic Wnt pathway. Mol Oncol 8(5):894–911PubMedPubMedCentralGoogle Scholar
  137. 137.
    Fleming SD, Tsokos GC (2006) Complement, natural antibodies, autoantibodies and tissue injury. Autoimmun Rev 5(2):89–92PubMedGoogle Scholar
  138. 138.
    Nowling TK, Gilkeson GS (2011) Mechanisms of tissue injury in lupus nephritis. Arthritis Res Ther 13(6):250PubMedPubMedCentralGoogle Scholar
  139. 139.
    Vargas ME, Watanabe J, Singh SJ, Robinson WH, Barres BA (2010) Endogenous antibodies promote rapid myelin clearance and effective axon regeneration after nerve injury. Proc Natl Acad Sci U S A 107(26):11993–11998PubMedPubMedCentralGoogle Scholar
  140. 140.
    Caja S, Maki M, Kaukinen K, Lindfors K (2011) Antibodies in celiac disease: implications beyond diagnostics. Cell Mol Immunol 8(2):103–109PubMedPubMedCentralGoogle Scholar
  141. 141.
    Elkon K, Casali P (2008) Nature and functions of autoantibodies. Nat Clin Pract Rheumatol 4(9):491–498PubMedPubMedCentralGoogle Scholar
  142. 142.
    Graver JC, Boots AMH, Haacke EA, Diepstra A, Brouwer E, Sandovici M (2019) Massive B-Cell infiltration and organization into artery tertiary lymphoid organs in the aorta of large vessel giant cell arteritis. Front Immunol 10:83PubMedPubMedCentralGoogle Scholar
  143. 143.
    Hoyer BF, Mumtaz IM, Loddenkemper K, Bruns A, Sengler C, Hermann KG, Maza S, Keitzer R, Burmester GR, Buttgereit F, Radbruch A, Hiepe F (2012) Takayasu arteritis is characterised by disturbances of B cell homeostasis and responds to B cell depletion therapy with rituximab. Ann Rheum Dis 71(1):75–79PubMedGoogle Scholar
  144. 144.
    McGowan JE, Kratch J, Chattopadhyay S, Joe B, Conti HR, Chakravarti R (2017) Bioinformatic analysis reveals new determinants of antigenic 14-3-3 proteins and a novel antifungal strategy. PLoS One 12(12):e0189503PubMedPubMedCentralGoogle Scholar
  145. 145.
    Wang W, Knovich MA, Coffman LG, Torti FM, Torti SV (2010) Serum ferritin: past, present and future. Biochim Biophys Acta 1800(8):760–769PubMedPubMedCentralGoogle Scholar
  146. 146.
    Pagnoux C, Cohen P, Guillevin L (2006) Vasculitides secondary to infections. Clin Exp Rheumatol 24(2 Suppl 41):S71–S81 Epub 2006/07/25PubMedGoogle Scholar
  147. 147.
    Helweg-Larsen J, Tarp B, Obel N, Baslund B (2002) No evidence of parvovirus B19, Chlamydia pneumoniae or human herpes virus infection in temporal artery biopsies in patients with giant cell arteritis. Rheumatology (Oxford) 41(4):445–449Google Scholar
  148. 148.
    Gilden D, White T, Khmeleva N, Heintzman A, Choe A, Boyer PJ, Grose C, Carpenter JE, Rempel A, Bos N, Kandasamy B, Lear-Kaul K, Holmes DB, Bennett JL, Cohrs RJ, Mahalingam R, Mandava N, Eberhart CG, Bockelman B, Poppiti RJ, Tamhankar MA, Fogt F, Amato M, Wood E, Durairaj V, Rasmussen S, Petursdottir V, Pollak L, Mendlovic S, Chatelain D, Keyvani K, Brueck W, Nagel MA (2015) Prevalence and distribution of VZV in temporal arteries of patients with giant cell arteritis. Neurology 84(19):1948–1955PubMedPubMedCentralGoogle Scholar
  149. 149.
    Muratore F, Croci S, Tamagnini I, Zerbini A, Bellafiore S, Belloni L, Boiardi L, Bisagni A, Pipitone N, Parmeggiani M, Cavazza A, Salvarani C (2017) No detection of varicella-zoster virus in temporal arteries of patients with giant cell arteritis. Semin Arthritis Rheum. PubMedGoogle Scholar
  150. 150.
    Russo MG, Waxman J, Abdoh AA, Serebro LH (1995) Correlation between infection and the onset of the giant cell (temporal) arteritis syndrome. A trigger mechanism? Arthritis Rheum 38(3):374–380PubMedGoogle Scholar
  151. 151.
    Manna R, Latteri M, Cristiano G, Todaro L, Scuderi F, Gasbarrini G (1998) Anticardiolipin antibodies in giant cell arteritis and polymyalgia rheumatica: a study of 40 cases. Br J Rheumatol 37(2):208–210PubMedGoogle Scholar
  152. 152.
    Arora P, Malik M, Sachdeva R, Saxena L, Das J, Ramachandran VG, Pal R (2017) Innate and humoral recognition of the products of cell death: differential antigenicity and immunogenicity in lupus. Clin Exp Immunol 187(3):353–368PubMedGoogle Scholar
  153. 153.
    Kaplan A, Bueno M, Fournier AE (2017) Extracellular functions of 14-3-3 adaptor proteins. Cell Signal 31:26–30PubMedGoogle Scholar
  154. 155.
    McGowan J, Peter C, Chattopadhyay S, Chakravarti R (2019) 14-3-3zeta: a novel immunogen promotes inflammatory cytokine production. Front Immunol.
  155. 156.
    Ma J, Luo X, Wu Q, Chen Z, Kou L, Wang H (2010) Circulation levels of acute phase proteins in patients with Takayasu arteritis. J Vasc Surg. 201051 (3):700-6. Epub 2010/01/27. PubMed PMID: 20100644 PubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Physiology & Pharmacology, College of Medical & Life SciencesUniversity of Toledo College of MedicineToledoUSA
  2. 2.Department of Internal Medicine, Mount Sinai Beth IsraelIcahn School of Medicine at Mount SinaiNew YorkUSA
  3. 3.Division of RheumatologyUniversity of Toledo College of MedicineToledoUSA
  4. 4.Depatment of Intenal MedicineBeaumont HospitalDearbornUSA

Personalised recommendations